CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1372-1381.DOI: 10.11949/0438-1157.20200713
• Catalysis, kinetics and reactors • Previous Articles Next Articles
WEI Qiang(),HUANG Wenbin,ZHOU Yasong()
Received:
2020-06-05
Revised:
2020-09-03
Online:
2021-03-05
Published:
2021-03-05
Contact:
ZHOU Yasong
通讯作者:
周亚松
作者简介:
魏强(1979—),男,博士,副教授,基金资助:
CLC Number:
WEI Qiang, HUANG Wenbin, ZHOU Yasong. Research on adsorption behavior of sulfur and nitrogen compounds on P modified NiW/Al2O3 catalyst[J]. CIESC Journal, 2021, 72(3): 1372-1381.
魏强, 黄文斌, 周亚松. 硫氮化合物在磷改性NiW/Al2O3加氢催化剂上的吸附行为研究[J]. 化工学报, 2021, 72(3): 1372-1381.
Add to citation manager EndNote|Ris|BibTeX
催化剂 | 比表面积/ (m2·g-1) | 孔体积/ (ml·g-1) | 平均孔径/nm |
---|---|---|---|
Al2O3 | 278.9 | 0.61 | 6.4 |
Ni/Al2O3 | 252.8 | 0.57 | 6.5 |
W/Al2O3 | 208.2 | 0.43 | 6.0 |
NiW/Al2O3 | 186.7 | 0.38 | 5.9 |
P/Al2O3 | 251.1 | 0.60 | 6.9 |
Ni/P/Al2O3 | 240.0 | 0.55 | 6.8 |
W/P/Al2O3 | 190.4 | 0.39 | 6.8 |
NiW/P/Al2O3 | 173.0 | 0.35 | 6.9 |
Table 1 Pore structure of Al2O3 catalysts and P/Al2O3 catalysts
催化剂 | 比表面积/ (m2·g-1) | 孔体积/ (ml·g-1) | 平均孔径/nm |
---|---|---|---|
Al2O3 | 278.9 | 0.61 | 6.4 |
Ni/Al2O3 | 252.8 | 0.57 | 6.5 |
W/Al2O3 | 208.2 | 0.43 | 6.0 |
NiW/Al2O3 | 186.7 | 0.38 | 5.9 |
P/Al2O3 | 251.1 | 0.60 | 6.9 |
Ni/P/Al2O3 | 240.0 | 0.55 | 6.8 |
W/P/Al2O3 | 190.4 | 0.39 | 6.8 |
NiW/P/Al2O3 | 173.0 | 0.35 | 6.9 |
催化剂 | 200℃脱附 | 350℃脱附 | 弱酸中心数量 (L酸)/(μmol·g-1) | ||
---|---|---|---|---|---|
L酸/(μmol·g-1) | B酸/(μmol·g-1) | L酸/(μmol·g-1) | B酸/(μmol·g-1) | ||
NiW/Al2O3 | 308.5 | 30.1 | 183.1 | 17.3 | 125.4 |
NiW/P/Al2O3 | 562.7 | 53.1 | 330.5 | 30.5 | 232.2 |
Table 2 Acid property of Al2O3 catalysts and P/Al2O3 catalysts
催化剂 | 200℃脱附 | 350℃脱附 | 弱酸中心数量 (L酸)/(μmol·g-1) | ||
---|---|---|---|---|---|
L酸/(μmol·g-1) | B酸/(μmol·g-1) | L酸/(μmol·g-1) | B酸/(μmol·g-1) | ||
NiW/Al2O3 | 308.5 | 30.1 | 183.1 | 17.3 | 125.4 |
NiW/P/Al2O3 | 562.7 | 53.1 | 330.5 | 30.5 | 232.2 |
催化剂 | 比表面积/ (m2·g-1) | 喹啉平衡吸附量/(μg·m-2) | 吲哚平衡吸附量/(μg·m-2) |
---|---|---|---|
Al2O3 | 278.9 | 10.43 | 6.42 |
Ni/Al2O3 | 252.8 | 9.57 | 6.32 |
W/Al2O3 | 208.2 | 16.09 | 9.60 |
NiW/Al2O3 | 186.7 | 18.69 | 11.78 |
P/Al2O3 | 251.1 | 11.83 | 7.17 |
Ni/P/Al2O3 | 240.0 | 11.67 | 6.67 |
W/P/Al2O3 | 190.4 | 20.17 | 11.03 |
NiW/P/Al2O3 | 173.0 | 25.16 | 13.87 |
Table 3 Equilibrium adsorption capacity of quinoline and indole on Al2O3 catalysts and P/Al2O3 catalysts
催化剂 | 比表面积/ (m2·g-1) | 喹啉平衡吸附量/(μg·m-2) | 吲哚平衡吸附量/(μg·m-2) |
---|---|---|---|
Al2O3 | 278.9 | 10.43 | 6.42 |
Ni/Al2O3 | 252.8 | 9.57 | 6.32 |
W/Al2O3 | 208.2 | 16.09 | 9.60 |
NiW/Al2O3 | 186.7 | 18.69 | 11.78 |
P/Al2O3 | 251.1 | 11.83 | 7.17 |
Ni/P/Al2O3 | 240.0 | 11.67 | 6.67 |
W/P/Al2O3 | 190.4 | 20.17 | 11.03 |
NiW/P/Al2O3 | 173.0 | 25.16 | 13.87 |
催化剂 | 比表面积/ (m2·g-1) | DBT平衡吸附量/(μg·m-2) | DBT饱和吸附量/(mg·g-1) |
---|---|---|---|
Al2O3 | 278.9 | 7.35 | 2.05 |
Ni/Al2O3 | 252.8 | 7.31 | 1.85 |
W/Al2O3 | 208.2 | 11.71 | 2.33 |
NiW/Al2O3 | 186.7 | 11.42 | 2.13 |
P/Al2O3 | 251.1 | 8.36 | 2.10 |
Ni/P/Al2O3 | 240.0 | 7.79 | 1.87 |
W/P/Al2O3 | 190.4 | 11.82 | 2.25 |
NiW/P/Al2O3 | 173.0 | 13.35 | 2.31 |
Table 4 Equilibrium adsorption capacity of DBT on Al2O3 catalysts and P/Al2O3 catalysts
催化剂 | 比表面积/ (m2·g-1) | DBT平衡吸附量/(μg·m-2) | DBT饱和吸附量/(mg·g-1) |
---|---|---|---|
Al2O3 | 278.9 | 7.35 | 2.05 |
Ni/Al2O3 | 252.8 | 7.31 | 1.85 |
W/Al2O3 | 208.2 | 11.71 | 2.33 |
NiW/Al2O3 | 186.7 | 11.42 | 2.13 |
P/Al2O3 | 251.1 | 8.36 | 2.10 |
Ni/P/Al2O3 | 240.0 | 7.79 | 1.87 |
W/P/Al2O3 | 190.4 | 11.82 | 2.25 |
NiW/P/Al2O3 | 173.0 | 13.35 | 2.31 |
催化剂 | 比表面积/(m2·g-1) | 喹啉平衡 吸附量/ (μg·m-2) | 吲哚平衡 吸附量/ (μg·m-2) | DBT平衡 吸附量/ (μg·m-2) |
---|---|---|---|---|
NiW/Al2O3 | 186.7 | 17.70 | 10.96 | 10.22 |
NiW/P/Al2O3 | 173.0 | 24.15 | 13.17 | 12.96 |
Table 5 Equilibrium adsorption capacity of quinoline, indole and DBT on NiW/Al2O3 catalysts and NiW/P/Al2O3 catalysts
催化剂 | 比表面积/(m2·g-1) | 喹啉平衡 吸附量/ (μg·m-2) | 吲哚平衡 吸附量/ (μg·m-2) | DBT平衡 吸附量/ (μg·m-2) |
---|---|---|---|---|
NiW/Al2O3 | 186.7 | 17.70 | 10.96 | 10.22 |
NiW/P/Al2O3 | 173.0 | 24.15 | 13.17 | 12.96 |
吸附质 | 喹啉 | 吲哚 | DBT |
---|---|---|---|
分子偶极矩/Debye | 1.869 | 1.886 | 0.475 |
HOMO轨道特征值/eV | -5.856 | -4.972 | -5.179 |
C—N/C—S键键长/? | 1.374 | 1.388 | 1.765 |
Table 6 Structural characteristics of quinoline, indole and DBT
吸附质 | 喹啉 | 吲哚 | DBT |
---|---|---|---|
分子偶极矩/Debye | 1.869 | 1.886 | 0.475 |
HOMO轨道特征值/eV | -5.856 | -4.972 | -5.179 |
C—N/C—S键键长/? | 1.374 | 1.388 | 1.765 |
1 | 徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009: 277-280. |
Xu C M, Yang C H. Petroleum Refining Engineering[M]. 4th ed. Beijing: Petroleum Industry Press, 2009: 277-280. | |
2 | Han W, Nie H, Long X Y, et al. Preparation of F-doped MoS2/Al2O3 catalysts as a way to understand the electronic effects of the support Brønsted acidity on HDN activity[J]. Journal of Catalysis, 2016, 339: 135-142. |
3 | Wei Q, Wen S C, Tao X J, et al. Hydrodenitrogenation of basic and non-basic nitrogen-containing compounds in coker gas oil[J]. Fuel Processing Technology, 2015, 129: 76-84. |
4 | Yik E, Iglesia E. Mechanism and site requirements for thiophene hydrodesulfurization on supported Re domains in metal or sulfide form[J]. Journal of Catalysis, 2018, 368: 411-426. |
5 | Zhou W W, Zhang Y N, Tao X J, et al. Effects of gallium addition to mesoporous alumina by impregnation on dibenzothiophene hydrodesulfurization performances of the corresponding NiMo supported catalysts[J]. Fuel, 2018, 228: 152-163. |
6 | Vázquez-Garrido I, López-Benítez A, Berhault G, et al. Effect of support on the acidity of NiMo/Al2O3-MgO and NiMo/TiO2-Al2O3 catalysts and on the resulting competitive hydrodesulfurization/hydrodenitrogenation reactions[J]. Fuel, 2019, 236: 55-64. |
7 | Prado G H C, Rao Y, de Klerk A. Nitrogen removal from oil: a review[J]. Energy & Fuels, 2017, 31(1): 14-36. |
8 | Bachrach M, Marks T J, Notestein J M. Understanding the hydrodenitrogenation of heteroaromatics on a molecular level[J]. ACS Catalysis, 2016, 6(3): 1455-1476. |
9 | Gutiérrez O Y, Singh S, Schachtl E, et al. Effects of the support on the performance and promotion of (Ni)MoS2 catalysts for simultaneous hydrodenitrogenation and hydrodesulfurization[J]. ACS Catalysis, 2014, 4(5): 1487-1499. |
10 | Guo K, Ding Y, Yu Z X. One-step synthesis of ultrafine MoNiS and MoCoS monolayers as high-performance catalysts for hydrodesulfurization and hydrodenitrogenation[J]. Applied Catalysis B: Environmental, 2018, 239: 433-440. |
11 | Albersberger S, Shi H, Wagenhofer M, et al. On the enhanced catalytic activity of acid-treated, trimetallic Ni-Mo-W sulfides for quinoline hydrodenitrogenation[J]. Journal of Catalysis, 2019, 380: 332-342. |
12 | Pereyma V Y, Klimov O V, Prosvirin I P, et al. Effect of thermal treatment on morphology and catalytic performance of NiW/Al2O3 catalysts prepared using citric acid as chelating agent[J]. Catalysis Today, 2018, 305: 162-170. |
13 | Dorneles de Mello M, de Almeida-Braggio F, da Costa-Magalhães B, et al. Effects of phosphorus content on simultaneous ultradeep HDS and HDN reactions over NiMoP/Alumina catalysts[J]. Industrial & Engineering Chemistry Research, 2017, 56: 10287-10299. |
14 | Tong R L, Wang Y G, Zhang X, et al. Effect of phosphorus modification on the catalytic properties of NiW/γ-Al2O3 in the hydrogenation of aromatics from coal tar[J]. Journal of Fuel Chemistry and Technology, 2015, 43(12): 1461-1469. |
15 | Tao X J, Zhou Y S, Wei Q, et al. Inhibiting effects of nitrogen compounds on deep hydrodesulfurization of straight-run gas oil over a NiW/Al2O3 catalyst[J]. Fuel, 2017, 188: 401-407. |
16 | 王倩, 龙湘云, 聂红. 氮化物对NiW/Al2O3上DBT和4, 6-DMDBT加氢脱硫反应活性的影响[J]. 石油炼制与化工, 2011, 42(4): 30-34. |
Wang Q, Long X Y, Nie H. Effect of nitrogen compounds on the hydrodesulfurization of dibenzothiophene and 4, 6-dimethyldibenzothiophene over alumina-supported NiW catalyst[J]. Petroleum Processing and Petrochemicals, 2011, 42(4): 30-34. | |
17 | Zhang H, Li G, Jia Y H, et al. Adsorptive removal of nitrogen-containing compounds from fuel[J]. Journal of Chemical & Engineering Data, 2010, 55(1): 173-177. |
18 | Xiang C E, Chai Y M, Fan J, et al. Effect of phosphorus on the hydrodesulfurization and hydrodenitrogenation performance of presulfided NiMo/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2011, 39(5): 355-360. |
19 | Reinhoudt H R, Troost R, van Langeveld A D, et al. The nature of the active phase in sulfided NiW/γ-Al2O3 in relation to its catalytic performance in hydrodesulfurization reactions[J]. Journal of Catalysis, 2001, 203(2): 509-515. |
20 | Yu G L, Zhou Y S, Wei Q, et al. A novel method for preparing well dispersed and highly sulfided NiW hydrodenitrogenation catalyst[J]. Catalysis Communications, 2012, 23: 48-53. |
21 | Wang H, Fan Y, Shi G, et al. Highly dispersed NiW/γ-Al2O3 catalyst prepared by hydrothermal deposition method[J]. Catalysis Today, 2007, 125(3/4): 149-154. |
22 | Fang M X, Ma S, Wang T, et al. Hydrotreatment of model compounds with catalysts of NiW/Al2O3 and NiWP/Al2O3 to simulate low temperature coal tar oil[J]. RSC Advances, 2017, 7(86): 54512-54521. |
23 | 罗怡, 周亚松, 魏强, 等. 磷、柠檬酸改性对MoW/Ni/Al2O3催化剂性质及加氢脱氮性能的影响[J]. 化工学报, 2014, 65(10): 3916-3923. |
Luo Y, Zhou Y S, Wei Q, et al. Effect of citric acid and phosphorus on properties and hydrodenitrogenation performance of MoW/Ni/Al2O3 catalysts[J]. CIESC Journal, 2014, 65(10): 3916-3923. | |
24 | Ding S J, Jiang S J, Zhou Y S, et al. Oxygen effects on the structure and hydrogenation activity of the MoS2 active site: a mechanism study by DFT calculation[J]. Fuel, 2017, 194: 63-74. |
25 | López-Benítez A, Guevara-Lara A, Berhault G. Nickel-containing polyoxotungstates based on [PW9O34]9- and [PW10O39]13- keggin lacunary anions supported on Al2O3 for dibenzothiophene hydrodesulfurization application[J]. ACS Catalysis, 2019, 9(8): 6711-6727. |
26 | Wei Z Z, Chen Y Q, Wang J, et al. Cobalt encapsulated in N-doped graphene layers: an efficient and stable catalyst for hydrogenation of quinoline compounds[J]. ACS Catalysis, 2016, 6(9): 5816-5822. |
27 | 徐永强, 董晓芳, 赵会吉, 等. 二苯并噻吩在γ-Al2O3上分散状态及吸附状态的研究[J]. 石油学报(石油加工), 2003, (1): 12-16. |
Xu Y Q, Dong X F, Zhao H J, et al. Studies on dispersion and adsorption states of dibenzothiophene on γ-Al2O3[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2003, (1): 12-16. | |
28 | Braggio F A, Mello M D, Magalhaes B C, et al. Effects of citric acid addition method on the activity of NiMo/γ-Al2O3 catalysts in simultaneous hydrodesulfurization and hydrodenitrogenation reactions[J]. Energy & Fuels, 2019, 33(2): 1450-1457. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[6] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[7] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[8] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[9] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[10] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[11] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[12] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[13] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[14] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[15] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||