CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 61-70.DOI: 10.11949/0438-1157.20201201
• Reviews and monographs • Previous Articles Next Articles
NAN Haoxiong1,2(),ZHAO Chenzi1,YUAN Hong3(),LU Yang1,SHEN Xin1,ZHU Gaolong1,4,LIU Quanbing2(),HUANG Jiaqi3,ZHANG Qiang1()
Received:
2020-08-21
Revised:
2020-11-06
Online:
2021-01-05
Published:
2021-01-05
Contact:
YUAN Hong,LIU Quanbing,ZHANG Qiang
南皓雄1,2(),赵辰孜1,袁洪3(),卢洋1,沈馨1,朱高龙1,4,刘全兵2(),黄佳琦3,张强1()
通讯作者:
袁洪,刘全兵,张强
作者简介:
南皓雄(1986—),男,博士,讲师,基金资助:
CLC Number:
NAN Haoxiong, ZHAO Chenzi, YUAN Hong, LU Yang, SHEN Xin, ZHU Gaolong, LIU Quanbing, HUANG Jiaqi, ZHANG Qiang. Recent advances in solid-state lithium metal batteries: the role of external pressure and internal stress[J]. CIESC Journal, 2021, 72(1): 61-70.
南皓雄, 赵辰孜, 袁洪, 卢洋, 沈馨, 朱高龙, 刘全兵, 黄佳琦, 张强. 固态金属锂电池研究进展:外部压力和内部应力的影响[J]. 化工学报, 2021, 72(1): 61-70.
1 | Zhang Y J, Li X, Dong P, et al. Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42796-42803. |
2 | Wu G, Li X, Zhang Z, et al. Design of ultralong-life Li-CO2 batteries with IrO2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes[J]. Journal of Materials Chemistry A, 2020, 8(7): 3763-3770. |
3 | 叶戈, 袁洪, 赵辰孜, 等. 全固态锂硫电池正极中离子输运与电子传递的平衡[J]. 储能科学与技术, 2020, 9(2): 339-345. |
Ye G, Yuan H, Zhao C Z, et al. Balance between ion migration and electron transport in composite cathodes for all-solid-state lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 339-345. | |
4 | Jung S H, Kim U H, Kim J H, et al. Ni-rich layered cathode materials with electrochemo-mechanically compliant microstructures for all-solid-state Li batteries[J]. Advanced Energy Materials, 2020, 10(6): 1903360. |
5 | 李泓. 全固态锂电池:梦想照进现实[J]. 储能科学与技术, 2018, 7(2): 188-193. |
Li H. All-solid-state lithium batteries: dream shines into reality[J]. Energy Storage Science and Technology, 2018, 7(2): 188-193. | |
6 | Hou L P, Yuan H, Zhao C Z, et al. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium-sulfur batteries[J]. Energy Storage Materials, 2020, 25: 436-442. |
7 | Wood K N, Noked M, Dasgupta N P. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior[J]. ACS Energy Letters, 2017, 2(3): 664-672. |
8 | 李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478. |
Li W J, Xu H Y, Yang Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478. | |
9 | 张睿, 沈馨, 王金福, 等. 锂离子在三维骨架复合锂金属负极中的沉积规律[J]. 化工学报, 2020, 71(6): 2688-2695. |
Zhang R, Shen X, Wang J F, et al. Plating of Li ions in 3D structured lithium metal anodes[J]. CIESC Journal, 2020, 71(6): 2688-2695. | |
10 | Doux J M, Nguyen H, Tan D H S, et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2020, 10(1): 1903253. |
11 | Doux J M, Yang Y Y C, Tan D H S, et al. Pressure effects on sulfide electrolytes for all solid-state batteries[J]. Journal of Materials Chemistry A, 2020, 8(10): 5049-5055. |
12 | LePage W S, Chen Y, Kazyak E, et al. Lithium mechanics: roles of strain rate and temperature and implications for lithium metal batteries[J]. Journal of the Electrochemical Society, 2019, 166(2): A89-A97. |
13 | Harry K J, Higa K, Srinivasan V, et al. Influence of electrolyte modulus on the local current density at a dendrite tip on a lithium metal electrode[J]. Journal of the Electrochemical Society, 2016, 163(10): A2216-A2224. |
14 | Persson B N J. Contact mechanics for randomly rough surfaces[J]. Surface Science Reports, 2006, 61(4): 201-227. |
15 | Wang P, Qu W J, Song W L, et al. Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal batteries[J]. Advanced Functional Materials, 2019, 29(27): 1900950. |
16 | Tian H K, Qi Y. Simulation of the effect of contact area loss in all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(11): E3512-E3521. |
17 | Fuller K N G, Tabor D. The effect of surface roughness on the adhesion of elastic solids[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1975, 345(1642): 327-342. |
18 | Sakanoi R, Shimazaki T, Xu J X, et al. Communication: different behavior of Young's modulus and fracture strength of CeO2: density functional theory calculations[J]. Journal of Chemical Physics, 2014, 140(12): 121102. |
19 | Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of the Electrochemical Society, 2005, 152(2): A396-A404. |
20 | Sun Y Z, Huang J Q, Zhao C Z, et al. A review of solid electrolytes for safe lithium-sulfur batteries[J]. Science China-Chemistry, 2017, 60(12): 1508-1526. |
21 | 黄祯, 杨菁, 陈晓添, 等. 无机固体电解质材料的基础与应用研究[J]. 储能科学与技术, 2015, 4(1): 1-18. |
Huang Z, Yang J, Chen X T, et al. Research progress of inorganic solid electrolytes in foundmental and application field [J]. Energy Storage Science and Technology, 2015, 4(1): 1-18. | |
22 | Lu Y, Gu S, Hong X, et al. Pre-modified Li3PS4 based interphase for lithium anode towards high-performance Li-S battery[J]. Energy Storage Materials, 2018, 11: 16-23. |
23 | Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10: 682-686. |
24 | Zhang Z, Chen S, Yang J, et al. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2556-2565. |
25 | Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: 16030. |
26 | Hakari T, Sato Y, Yoshimi S, et al. Favorable carbon conductive additives in Li3PS4 composite positive electrode prepared by ball-milling for all-solid-state lithium batteries[J]. Journal of the Electrochemical Society, 2017, 164(12): A2804-A2811. |
27 | Ohtomo T, Hayashi A, Tatsumisago M, et al. All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling[J]. Journal of Solid State Electrochemistry, 2013, 17(10): 2551-2557. |
28 | Sakuda A, Hayashi A, Tatsumisago M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery[J]. Scientific Reports, 2013, 3: 2261. |
29 | Agostini M, Aihara Y, Yamada T, et al. A lithium-sulfur battery using a solid, glass-type P2S5-Li2S electrolyte[J]. Solid State Ionics, 2013, 244: 48-51. |
30 | Zhu J, Zhao J, Xiang Y, et al. Chemo-mechanical failure mechanism study in NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid-state lithium batteries[J]. Chemistry of Materials, 2020, 32: 4998-5008. |
31 | Paolella A, Zhu W, Xu G L, et al. Understanding the reactivity of a thin Li1.5Al0.5Ge1.5(PO4)3 solid-state electrolyte toward metallic lithium anode[J]. Advanced Energy Materials, 2020,10(32): 2001497. |
32 | Kobayashi Y, Miyashiro H, Takeuchi T, et al. All-solid-state lithium secondary battery with ceramic/polymer composite electrolyte[J]. Solid State Ionics, 2002, 152/153: 137-142. |
33 | Krauskopf T, Mogwitz B, Hartmann H, et al. The fast charge transfer kinetics of the lithium metal anode on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12[J]. Advanced Energy Materials, 2020, 10(27): 2000945. |
34 | Sastre J, Priebe A, Dobeli M, et al. Lithium garnet Li7La3Zr2O12 electrolyte for all-solid-state batteries: closing the gap between bulk and thin film Li-ion conductivities[J]. Advanced Materials Interfaces, 2020, 7(17): 2000425. |
35 | Lu Y, Huang X, Song Z, et al. Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces[J]. Energy Storage Materials, 2018, 15: 282-290. |
36 | Lu Y, Huang X, Ruan Y D, et al. An in situ element permeation constructed high endurance Li-LLZO interface at high current densities[J]. Journal of Materials Chemistry A, 2018, 6(39): 18853-18858. |
37 | Santosh K C, Longo R C, Xiong K, et al. Point defects in garnet-type solid electrolyte (c-Li7La3Zr2O12) for Li-ion batteries[J]. Solid State Ionics, 2014, 261: 100-105. |
38 | Huang X, Lu Y, Song Z, et al. Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte[J]. Energy Storage Materials, 2019, 22: 207-217. |
39 | Tippens J, Miers J C, Afshar A, et al. Visualizing chemomechanical degradation of a solid-state battery electrolyte[J]. ACS Energy Letters, 2019, 4(6): 1475-1483. |
40 | Liang J N, Luo J, Sun Q, et al. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2019, 21: 308-334. |
41 | Yu S, Schmidt R D, Garcia-Mendez R, et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO)[J]. Chemistry of Materials, 2016, 28(1): 197-206. |
42 | Lopez J, Mackanic D G, Cui Y, et al. Designing polymers for advanced battery chemistries[J]. Nature Reviews Materials, 2019, 4(5): 312-330. |
43 | Wang H, Lin C, Yan X H, et al. Mechanical property-reinforced PEO/PVDF/LiClO4/SN blend all solid polymer electrolyte for lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2020, 869: 114156. |
44 | Gregorio V, Garcia N, Tiemblo P. Solvent-free and scalable procedure to prepare PYR13TFSI/LiTFSI/PVDF-HFP thermoplastic electrolytes with controlled phase separation and enhanced Li ion diffusion[J]. Membranes, 2019, 9(4): 50. |
45 | Pan X N, Liu T Y, Kautz D J, et al. High-performance N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl)imide/poly(vinylidene fluoride-hexafluoropropylene) gel polymer electrolytes for lithium metal batteries[J]. Journal of Power Sources, 2018, 403: 127-136. |
46 | Yang Y, Wu Q, Wang D, et al. Decoupling the mechanical strength and ionic conductivity of an ionogel polymer electrolyte for realizing thermally stable lithium-ion batteries[J]. Journal of Membrane Science, 2020, 595: 117549. |
47 | Kim G T, Appetecchi G B, Carewska M, et al. UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids[J]. Journal of Power Sources, 2010, 195(18): 6130-6137. |
48 | Fenton D E, Parker J M, Wright P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589. |
49 | Ganser M, Hildebrand F E, Kamlah M, et al. A finite strain electro-chemo-mechanical theory for ion transport with application to binary solid electrolytes[J]. Journal of the Mechanics and Physics of Solids, 2019, 125: 681-713. |
50 | Smith P, Pennings A J. Eutectic solidification of the quasi binary system of isotactic polypropylene and pentaerythrityl tetrabromide[J]. Journal of Polymer Science: Polymer Physics Edition, 1977, 15(3): 523-540. |
51 | Joo J H, Bae Y C, Sun Y K. Phase behaviors of solid polymer electrolytes/salt system in lithium secondary battery by group-contribution method: the pressure effect[J]. Polymer, 2006, 47(1): 211-217. |
52 | Choi Y S, Bae Y C. The effect of pressure on phase behaviors of solid polymer electrolyte/salt systems in lithium battery[J]. Solid State Ionics, 2003, 158(3/4): 243-251. |
53 | Masias A, Felten N, Garcia-Mendez R, et al. Elastic, plastic, and creep mechanical properties of lithium metal[J]. Journal of Materials Science, 2019, 54(3): 2585-2600. |
54 | Xu C, Ahmad Z, Aryanfar A, et al. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(1): 57-61. |
55 | Zhang L, Yang T, Du C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up[J]. Nature Nanotechnology, 2020, 15(2): 94-98. |
56 | 王晗, 安汉文, 单红梅, 等. 全固态电池界面的研究进展[J]. 物理化学学报, 2020, 36: 2007070. |
Wang H, An H W, Shan H M, et al. Research progress on interfaces of all-solid-state batteries [J]. Acta Physico-Chimica Sinica, 2020, 36: 2007070. | |
57 | Kaboli S, Demers H, Paolella A, et al. Behavior of solid electrolyte in Li-polymer battery with NMC cathode viain-situ scanning electron microscopy[J]. Nano Letters, 2020, 20(3): 1607-1613. |
58 | Yao X Y, Huang B X, Yin J Y, et al. All-solid-state lithium batteries with inorganic solid electrolytes: review of fundamental science[J]. Chinese Physics B, 2016, 25(1): 216-229. |
59 | Nagao M, Imade Y, Narisawa H, et al. Reaction mechanism of all-solid-state lithium-sulfur battery with two-dimensional mesoporous carbon electrodes[J]. Journal of Power Sources, 2013, 243: 60-64. |
60 | Yan H, Wang H, Wang D, et al. In situ generated Li2S–C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading[J]. Nano Letters, 2019, 19(5): 3280-3287. |
61 | Suzuki K, Mashirno N, Ikeda Y, et al. High cycle capability of all-solid-state lithium-sulfur batteries using composite electrodes by liquid-phase and mechanical mixing[J]. ACS Applied Energy Materials, 2018, 1(6): 2373-2377. |
62 | Liang J W, Li X N, Zhao Y, et al. An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries[J]. Advanced Energy Materials, 2019, 9(38): 1902125. |
63 | Wang C H, Adair K R, Liang J W, et al. Solid-state plastic crystal electrolytes: effective protection interlayers for sulfide-based all-solid-state lithium metal batteries[J]. Advanced Functional Materials, 2019, 29(26): 1900392. |
64 | Ji Y, Zhou C K, Lin F, et al. Submicron-sized Nb-doped lithium garnet for high ionic conductivity solid electrolyte and performance of quasi-solid-state lithium battery[J]. Materials, 2020, 13(3): 560. |
65 | Shen X, Zhang R, Chen X, et al. The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength?[J]. Advanced Energy Materials, 2020, 10(10): 2070045. |
66 | Krauskopf T, Hartmann H, Zeier W G, et al. Toward a fundamental understanding of the lithium metal anode in solid-state batteries-an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14463-14477. |
67 | Wang M, Sakamoto J. Correlating the interface resistance and surface adhesion of the Li metal-solid electrolyte interface[J]. Journal of Power Sources, 2018, 377: 7-11. |
68 | Wang M, Wolfenstine J B, Sakamoto J. Temperature dependent flux balance of the Li/Li7La3Zr2O12 interface[J]. Electrochimica Acta, 2019, 296: 842-847. |
69 | Kasemchainan J, Zekoll S, Spencer Jolly D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nature Materials, 2019, 18(10): 1105-1111. |
70 | Wang M J, Choudhury R, Sakamoto J. Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density[J]. Joule, 2019, 3(9): 2165-2178. |
71 | Barai P, Higa K, Srinivasan V. Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies[J]. Physical Chemistry Chemical Physics, 2017, 19(31): 20493-20505. |
72 | Porz L, Swamy T, Sheldon B W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Advanced Energy Materials, 2017, 7(20): 1701003. |
73 | Kim S, Jung C, Kim H, et al. The role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte[J]. Advanced Energy Materials, 2020, 10(12): 1903993. |
74 | Sharafi A, Kazyak E, Davis A L, et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12[J]. Chemistry of Materials, 2017, 29(18): 7961-7968. |
75 | Yamamoto M, Takahashi M, Terauchi Y, et al. Fabrication of composite positive electrode sheet with high active material content and effect of fabrication pressure for all-solid-state battery[J]. Journal of the Ceramic Society of Japan, 2017, 125(5): 391-395. |
76 | Zhang W B, Schroder D, Arlt T, et al. (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2017, 5(20): 9929-9936. |
77 | Koerver R, Aygun I, Leichtweiss T, et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes[J]. Chemistry of Materials, 2017, 29(13): 5574-5582. |
78 | Ito S, Fujiki S, Yamada T, et al. A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte[J]. Journal of Power Sources, 2014, 248: 943-950. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[3] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[4] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[5] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[6] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[7] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[8] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[9] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[10] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[11] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[12] | Qingchao LIU, Hui JIA, Yifei XU, Na LU, Yanmei YIN, Jie WANG. Study on shear-force distribution in biological aerated filter based on FBG sensing technology [J]. CIESC Journal, 2023, 74(4): 1755-1763. |
[13] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
[14] | Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061. |
[15] | Yue SONG, Qicheng ZHANG, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Synthesis of MoS2-based single atom catalyst and its application in electrocatalysis [J]. CIESC Journal, 2023, 74(2): 535-545. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1466
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1330
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||