CIESC Journal ›› 2018, Vol. 69 ›› Issue (11): 4605-4613.DOI: 10.11949/j.issn.0438-1157.20180699
Previous Articles Next Articles
GAO Xiang1, GUO Yuan1, WEI Difeng1, LUO Yingwu1, SU Rongxin2
Received:
2018-06-29
Revised:
2018-09-20
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the National Natural Science Foundation of China (21574115, 21875213).
高翔1, 国媛1, 魏迪锋1, 罗英武1, 苏荣欣2
通讯作者:
高翔
基金资助:
国家自然科学基金项目(21574115,21875213)。
CLC Number:
GAO Xiang, GUO Yuan, WEI Difeng, LUO Yingwu, SU Rongxin. Recent progress on binders for silicon-based anodes in lithium-ion batteries[J]. CIESC Journal, 2018, 69(11): 4605-4613.
高翔, 国媛, 魏迪锋, 罗英武, 苏荣欣. 锂离子电池硅基负极黏结剂的研究新进展[J]. 化工学报, 2018, 69(11): 4605-4613.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180699
[1] | THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7):7854-7863. |
[2] | WANG C S, WU G T, LI W Z. Lithium insertion in ball-milled graphite[J]. Journal of Power Sources, 1998, 76(1):1-10. |
[3] | MIZUSHIMA K, JONES P, WISEMAN P, et al. LiCoOx (0x15(6):783-789. |
[4] | PAULSEN J, NEHAUS J, DAHN J. Layered LiCoO2:with a different oxygen stacking (O2 structure) as a cathode material for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 2000, 147(2):508-516. |
[5] | RITCHIE A G. Recent developments and future prospects for lithium rechargeable batteries[J]. Journal of Power Sources, 2001, 96(1):1-4. |
[6] | WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5):414-429. |
[7] | SZCZECH J R, SONG J. Nanostructured silicon for high capacity lithium battery anodes[J]. Energy &Environmental Science, 2011, 4(1):56-72. |
[8] | LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2):1522-1531. |
[9] | 武兆辉, 杨娟玉, 闫坤, 等. 锂离子电池硅基负极用聚合物黏结剂的研究进展[J]. 稀有金属, 2016, 40(8):838-849. WU Z H, YANG J Y, YAN K, et al. Advances in polymeric binder for silicon based anode of lithium-ion batteries[J]. Chinese Journal of Rare Metals, 2016, 40(8):838-849. |
[10] | JUNG D, HWANG T, PARK S. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries[J]. Nano Letters, 2013, 13(5):2092-2097. |
[11] | GOLMON S, MAUTE K, LEE S, et al. Stress generation in silicon particles during lithium insertion[J]. Applied Physics Letters, 2010, 97(3):033111-033113. |
[12] | CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1):30-34. |
[13] | CUI L F, RUFFO R, CHAN C K, et al. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes[J]. Nano Letters, 2008, 9(1):414-491. |
[14] | CHOI J W, MCDONOUGH J, JEONG S, et al. Stepwise nanopore evolution in one-dimensional nanostructures[J]. Nano Letters, 2010, 10(4):1409-1413. |
[15] | LI X, CHO J H, LI N, et al. Carbon nanotube-enhanced growth of silicon nanowires as an anode for high-performance lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(1):87-93. |
[16] | SONG T, XIA J, LEE J H, et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries[J]. Nano Letters, 2010, 10(5):1710-1716. |
[17] | YANG J, LU S, KAN S, et al. Electrochemical preparation of silicon nanowires from nanometre silica in molten calcium chloride[J]. Chemical Communications, 2009, 22(22):3273-3275. |
[18] | KIM H S, CHUNG K Y, CHO B W. Electrochemical properties of carbon-coated Si/B composite anode for lithium ion batteries[J]. Journal of Power Sources, 2009, 189(1):108-113. |
[19] | CHEN Y, QIAN J, CAO Y, et al. Green synthesis and stable Li-storage performance of FeSi2/Si@C nanocomposite for lithium-ion batteries[J]. ACS Applied Materials&Interfaces, 2012, 4(7):3753-3758. |
[20] | HATCHARD T D, DAHN J R. Study of the electrochemical performance of sputtered Si1-xSnx films[J]. Journal of the Electrochemical Society, 2004, 151(2):306-315. |
[21] | CHEN L B, XIE J Y, YU H C, et al. Si-Al thin film anode material with superior cycle performance and rate capability for lithium ion batteries[J]. Electrochimica Acta, 2008, 53(28):8149-8153. |
[22] | XIANG H, ZHANG K, JI G, et al. Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability[J]. Carbon, 2011, 49(5):1787-1796. |
[23] | FAN Y, ZHANG Q, XIAO Q, et al. High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology[J]. Carbon, 2013, 59(7):264-269. |
[24] | LIU N, WU H, MCDOWEILL M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Letters, 2012, 12(6):3315-3321. |
[25] | JO Y N, KIM Y, KIM J S, et al. Si-graphite composites as anode materials for lithium secondary batteries[J]. Journal of Power Sources, 2010, 195(18):603l-6036. |
[26] | ZHOU M, CAI T, PU F, et al. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries[J]. ACS Applied Materials &Interfaces, 2013, 5(8):3449-3455. |
[27] | 刘欣, 赵海雷, 解晶莹, 等. 锂离子电池高比容量负极用黏结剂[J]. 化学进展, 2013, 25(8):1401-1410. LIU X, ZHAO H L, XIE J Y, et al. Polymer binders for high capacity electrode of lithium-ion battery[J]. Progress in Chemistry, 2013, 25(8):1401-1410. |
[28] | WU M, XIAO X, VUKMIROVIC N, et al. Toward an ideal polymer binder design for high-capacity battery anodes[J]. Journal of the American Chemical Society, 2013, 135(32):12048-12056. |
[29] | LIU G, ZHENG H, SIMENS A S, et al. Optimization of acetylene black conductive additive and PVDF composition for high-power rechargeable lithium-ion cells[J]. Journal of the Electrochemical Society, 2007, 6(14):45-56. |
[30] | CHOU S L, PAN Y, WANG J Z, et al. Small things make a big difference:binder effects on the performance of Li and Na batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(38):20347-20359. |
[31] | MAGASINSKI A, ZDYRKO B, KOVALENKO I, et al. Toward efficient binders for Li-ion battery Si-based anodes:polyacrylic acid[J]. ACS Appl. Mater. & Inter., 2010, 2(11):3004-3010. |
[32] | HOCHGATTERER N S, SCHWEIGER M R, KOLLER S, et al. Silicon/graphite composite electrodes for high-capacity anodes:influence of binder chemistry on cycling stability[J]. Electrochemical and Solid-State Letters, 2008, 11(5):A76-A80. |
[33] | JEONG Y K, KWON T W, LEE I, et al. Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes[J]. Energy Environmental Science, 2015, 8(4):1224-1230. |
[34] | MAZOUZI D, KARKAR Z, HERNANDEZ C R, et al. Critical roles of binders and formulation at multiscales of silicon-based composite electrodes[J]. Journal of Power Sources, 2015, 280(15):533-549. |
[35] | WU H, YU G H, PAN L J, et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles[J]. Nature Communications, 2013, 4(1):1943-1949 |
[36] | HAN Z J, YABUUCHI N, HASHIMOTO S, et al. Cross-linked poly(acrylic acid) with polycarbodiimide as advanced binder for Si/graphite composite negative electrodes in Li-ion batteries[J]. ECS Electrochemistry Letters, 2013, 2(2):A17-A20. |
[37] | ZHENG T, JIA Z, LIN N, et al. Molecular spring enable high-performance anode for lithium ion batteries[J]. Polymers, 2017, 9(12):657-664. |
[38] | KIERZEK K. Influence of binder adhesion ability on the performance of silicon/carbon composite as Li-ion battery anode[J]. Journal of Materials Engineering & Performance, 2016, 25(6):2326-2330. |
[39] | ZHAO H, YUAN W, LIU G. Hierarchical electrode design of high-capacity alloy nanomaterials for lithium-ion batteries[J]. Nano Today, 2015, 10(2):193-212. |
[40] | 岳丽萍, 韩鹏献, 姚建华, 等. 锂离子电池硅基负极黏结剂研究进展[J]. 电池工业, 2017, 21(1):31-44. YUE L P, HAN P X, YAO J H, et al. Advances of binder for silicon-based anode in lithium ion batteries[J]. Chinese Battery Industry, 2017, 21(1):31-34. |
[41] | NIRMALE T C, KALE B B, VARMA A J. A review on cellulose and lignin based binders and electrodes:small steps towards a sustainable lithium ion battery[J]. International Journal of Biological Macromolecules, 2017, 103(5):1032-1043. |
[42] | 叶利强, 符冬菊, 马清, 等. 锂离子电池硅基负极材料黏结剂的研究进展[J]. 电池, 2014, 44(4):238-240. YE L Q, FU D J, MA Q, et al. Research progress in binders of Si-based anodes for Li-ion battery[J]. Battery Bimonthly, 2014, 44(4):238-240. |
[43] | JEENA M T, LEE J I, KIM S H, et al. Multifunctional molecular design as an efficient polymeric binder for silicon anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(20):18001-18007. |
[44] | PARK Y, LEE S, KIM S H, et al. A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries[J]. RSC Advances, 2013, 3(31):12625-12630. |
[45] | SONG J, ZHOU M, YI R, et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries[J]. Advanced Functional Materials, 2014, 24(37):5904-5910. |
[46] | RYOU M H, KIM J, LEE I, et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries[J]. Advanced Materials, 2013, 25(11):1571-1576. |
[47] | KOO B, KIM H, CHO Y, et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries[J]. Angewandte Chemie, 2012, 51(35):8762-8767. |
[48] | ZHANG L, ZHANG L Y, CHAI L, et al. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(44):19036-19045. |
[49] | WEI L, HOU Z. High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(42):22156-22162. |
[50] | GENDERSUREN B, OH E S. Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery[J]. Journal of Power Sources, 2018, 384(30):379-386. |
[51] | CHEN C, LEE S H, CHO M S, et al. Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(4):2658-2665. |
[52] | LIU Z, HAN S, XU C, et al. In situ crosslinked PVA-PEI polymer binder for long-cycle silicon anodes in Li-ion batteries[J]. RSC Advances, 2016, 6(72):68371-68378. |
[53] | MACDIARMID A G, EPSTEIN A J. Polyanilines:a novel class of conducting polymers[J]. Faraday Discussions of the Chemical Society, 1989, 202(88):317-327. |
[54] | LIU Y, MATSUMURA T, IMANISH N, et al. Preparation and characterization of Si/C composite coated with polyaniline as novel anodes for Li-ion batteries[J]. Electrochemical and Solid-State Letters, 2005, 8(11):A599-A602. |
[55] | LIU G, XUN S, VUKMIROVIC N, et al. Polymers with tailored electronic structure for high capacity lithium battery electrodes[J]. Advanced Materials, 2011, 23(40):4679-4683. |
[56] | ZENG W, WANG L, PENG X, et al. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries[J]. Advanced Energy Materials, 2018, 11(8):1702314-1702316. |
[57] | LIU D, ZHAO Y, TAN R, et al. Novel conductive binder for high-performance silicon anodes in lithium ion batteries[J]. Nano Energy, 2017, 36(4):206-212. |
[58] | ZHAO H, DU A, LING M, et al. Conductive polymer binder for nano-silicon/graphite composite electrode in lithium-ion batteries towards a practical application[J]. Electrochimica Acta, 2016, 209(5):159-162. |
[59] | CHEN Z, WANG C, LOPEZ J, et al. High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder[J]. Advanced Energy Materials, 2015, 5(8):1401826-1401831. |
[60] | SUN Y, LOPEZ J, LEE H, et al. A stretchable graphitic carbon/Si anode enabled by conformal coating of a self-healing elastic polymer[J]. Advanced Materials, 2016, 28(12):2455-2461. |
[61] | WANG C, WU H, CHEN Z, et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries[J]. Nature Chemistry, 2013, 5(12):1042-1048. |
[62] | XU Z, YANG J, ZHANG T, et al. Silicon microparticle anodes with self-healing multiple network binder[J]. Joule, 2018, 2(5):818-819. |
[63] | MUNAOKA T, YAN X, LOPEZ J, et al. Ionically conductive self-healing binder for low cost Si microparticles anodes in Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(11):1703138-1703142. |
[64] | WU Z H, YANG J Y, YU B, et al. Self-healing alginate-carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries[J]. Rare Metals, 2016, 1(2):1-8. |
[65] | BIE Y, YANG J, NULI Y, et al. Oxidized starch as a superior binder for silicon anodes in lithium-ion batteries[J]. RSC Advances, 2016, 6(99):97084-97088. |
[66] | XU J, ZHANG Q, CHENG Y T. High capacity silicon electrodes with Nafion as binders for Lithium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 163(3):A401-A405. |
[67] | KURUBA R, DATTA M K, DAMODARAN K, et al. Guar gum:structural and electrochemical characterization of natural polymer based binder for silicon-carbon composite rechargeable Li-ion battery anodes[J]. Journal of Power Sources, 2015, 298(11):331-340. |
[68] | LIN C T, HUANG T Y, HUANG J J, et al. Multifunctional co-poly(amic acid):a new binder for Si-based micro-composite anode of lithium-ion battery[J]. Journal of Power Sources, 2016, 330(9):246-252 |
[69] | SHAN C, WU K, YEN H J, et al. Graphene oxides used as a new "Dual Role" binder for stabilizing silicon nanoparticles in lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2018, 10(18):15665-15672. |
[70] | ZHANG J, ZHANG C, WU S, et al. High-performance lithium-ion battery with nano-porous polycrystalline silicon particles as anode[J]. Electrochimica Acta, 2016, 208(4):174-179. |
[71] | YOON T, CHAPMAN N, CAO C N, et al. Electrochemical reactivity of polyimide and feasibility as a conductive binder for silicon negative electrodes[J]. Journal of Materials Science, 2016, 52(7):1-9. |
[72] | KARKAR Z, GUYOMARD D, ROUE L, et al. A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes[J]. Electrochimica Acta, 2017, 258(3):453-466. |
[73] | WANG L, LIU T, PENG X, et al. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28(3):1704858-1704862. |
[74] | SANG H L, LEE J H, DONG H N, et al. Epoxidized natural rubber-chitosan network binder for silicon anode in lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2018, 10(19):16449-16457. |
[75] | FENG K, LI M, LIU W, et al. Silicon-based anodes for lithium-ion batteries:from fundamentals to practical applications[J]. Small, 2018, 14(8):1702737-1702746. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[3] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[4] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[5] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[6] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[7] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[8] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[9] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[10] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[11] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[12] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[13] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[14] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[15] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||