1 |
Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367.
|
2 |
Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22(3): 587-603.
|
3 |
Scrosati B, Garche J. Lithium batteries: status, prospects and future[J]. J. Power Sources, 2010, 195(9): 2419-2430.
|
4 |
Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future[J]. Energy Environ. Sci., 2011, 4(9): 3287-3295.
|
5 |
Zhang S S, Xu K, Jow T R. Study of the charging process of a LiCoO2-based Li-ion battery[J]. J. Power Sources, 2006, 160(2): 1349-1354.
|
6 |
Candelaria S L, Shao Y, Zhou W, et al. Nanostructured carbon for energy storage and conversion[J]. Nano Energy, 2012, 1(2): 195-220.
|
7 |
Persson K, Sethuraman V A, Hardwick L J, et al. Lithium diffusion in graphitic carbon[J]. J. Phys. Chem. Lett., 2010, 1(8): 1176-1180.
|
8 |
Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material[J]. Science, 1997, 276(5317): 1395-1397.
|
9 |
Zhang W M, Hu J S, Guo Y G, et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries[J]. Adv. Mater., 2008, 20(6): 1160-1165.
|
10 |
Kasavajjula U, Wang C S, Appleby A J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J]. J. Power Sources, 2007, 163(2): 1003-1039.
|
11 |
Hu Y S, Demir-Cakan R, Titirici M M, et al. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries[J]. Angew. Chem. Int. Ed., 2008, 47(9): 1645-1649.
|
12 |
Wu Z S, Ren W C, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano, 2010, 4(6): 3187-3194.
|
13 |
Zhou G, Wang D W, Li F, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries[J]. Chem. Mater., 2010, 22(18): 5306-5313.
|
14 |
Wang H, Cui L F, Yang Y, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries[J]. J. Am. Chem. Soc., 2010, 132(40): 13978-13980.
|
15 |
Zhong M, He W W, Shuang W, et al. Metal-organic framework derived core-shell Co/Co3O4@N-C nanocomposites as high performance anode materials for lithium ion batteries[J]. Inorg. Chem., 2018, 57(8): 4620-4628.
|
16 |
Chen Y, Wang Y, Wang Z, et al. Densification by compaction as an effective low-cost method to attain a high areal lithium storage capacity in a CNT@Co3O4 sponge[J]. Adv. Energy Mater., 2018, 8(19): 1702981.
|
17 |
Huang G, Zhang F, Du X, et al. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries[J]. ACS Nano, 2015, 9(2): 1592-1599.
|
18 |
Chen Y M, Yu L, Lou X W. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage[J]. Angew. Chem. Int. Ed., 2016, 55(20): 5990-5993.
|
19 |
Li Y, Tan B, Wu Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability[J]. Nano Lett., 2008, 8(1): 265-270.
|
20 |
Yan N, Hu L, Li Y, et al. Co3O4 nanocages for high-performance anode material in lithium ion batteries[J]. J. Phys. Chem. C, 2012, 116(12): 7227-7235.
|
21 |
Yan C, Chen G, Zhou X, et al. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries[J]. Adv. Funct. Mater., 2016, 26(9): 1428-1436.
|
22 |
Wu Z S, Ren W, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano, 2010, 4(6): 3187-3194.
|
23 |
Dou Y, Xu J, Ruan B, et al. Atomic layer-by-layer Co3O4/graphene composite for high performance lithium-ion batteries[J]. Adv. Energy Mater., 2016, 6(8): 1501835.
|
24 |
Wang B, Lu X Y, Tang Y. Synthesis of snowflake-shaped Co3O4 with a high aspect ratio as a high capacity anode material for lithium ion batteries[J]. J. Mater. Chem. A, 2015, 3(18): 9689-9699.
|
25 |
Maier J. Thermodynamics of electrochemical lithium storage[J]. Angew. Chem. Int. Ed., 2013, 52(19): 4998-5026.
|
26 |
Liu R, Zhao S, Zhang M, et al. High interfacial lithium storage capability of hollow porous Mn2O3 nanostructures obtained from carbonate precursors[J]. Chem. Commun., 2015, 51(26): 5728-5731.
|
27 |
Kang W, Tang Y, Li W, et al. High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode[J]. Nanoscale, 2015, 7(1): 225-231.
|
28 |
Shin J Y, Samuelis D, Maier J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena[J]. Adv. Funct. Mater., 2011, 21(18): 3464-3472.
|
29 |
Do J S, Weng C H. Preparation and characterization of CoO used as anodic material of lithium battery[J]. J. Power Sources, 2005, 146(1/2): 482-486.
|
30 |
Laruelle S, Grugeon S, Poizot P, et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential[J]. J. Electrochem. Soc., 2002, 149(5): A627-A634.
|
31 |
Zeng Z, Zhao H, Lyu P, et al. Electrochemical properties of iron oxides/carbon nanotubes as anode material for lithium ion batteries[J]. J. Power Sources, 2015, 274: 1091-1099.
|