CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4268-4284.DOI: 10.11949/0438-1157.20220600
• Reviews and monographs • Previous Articles Next Articles
Jianmeng WU1,2,3(), Shuang ZHENG3, Shaojuan ZENG1,3(), Xiangping ZHANG1,3, Can YANG2,3, Haifeng DONG1,3
Received:
2022-04-05
Revised:
2022-06-23
Online:
2022-11-02
Published:
2022-10-05
Contact:
Shaojuan ZENG
吴建猛1,2,3(), 郑爽3, 曾少娟1,3(), 张香平1,3, 杨灿2,3, 董海峰1,3
通讯作者:
曾少娟
作者简介:
吴建猛(1998—),男,硕士研究生,wujianmeng2021@ipe.ac.cn
基金资助:
CLC Number:
Jianmeng WU, Shuang ZHENG, Shaojuan ZENG, Xiangping ZHANG, Can YANG, Haifeng DONG. Status and prospect on CO2 adsorption and separation by supported ionic liquids[J]. CIESC Journal, 2022, 73(10): 4268-4284.
吴建猛, 郑爽, 曾少娟, 张香平, 杨灿, 董海峰. 负载型离子液体吸附分离CO2的研究现状及展望[J]. 化工学报, 2022, 73(10): 4268-4284.
Add to citation manager EndNote|Ris|BibTeX
吸附剂(离子液体@载体) | IL负载量/%(mass) | 温度/℃ | 压力/MPa | 吸附量/(mmol CO2/g sorbent) | 文献 |
---|---|---|---|---|---|
[Bmim][NO3]@SiO2 | 50 | 25 | 0.1 | 0.35 | [ |
[Bmim][PF6]@硅胶 | 20 | 0 | 0.1 | 0.84 | [ |
[Emim][Ac]@气相SiO2 | 40 | 40 | 0.1 | 0.82 | [ |
[Apmim][Br]@硅胶 | 40 | 35 | 0.1 | 0.67 | [ |
[N1111][Gly]@硅胶 | 22.4 | 30 | 0.1 | 0.93 | [ |
[P4444][2-Op]@MS | 10 | 50 | 0.1 | 1.68 | [ |
[N2222][Gly]@PDVB | 51 | 30 | 0.1 | 1.63 | [ |
[AEmim][Lys]@PMMA | 50 | 30 | 0.1 | 1.50 | [ |
[EOEOEmim][Gly]@D101 | 38 | 25 | 0.1 | 0.99 | [ |
[Bmim][NTf2]@PSF | 32 | 45 | 0.4 | 1.30 | [ |
[N4444][Ac]@纤维素 | 25 | 25 | 3.0 | 0.72 | [ |
[dmedah][PR]@AC | 10 | 25 | 0.1 | 1.21 | [ |
[vbtma][Gly]@AC | 20 | 25 | 0.1 | 1.51 | [ |
[Emim][Gly]@F600-900 | — | 30 | 0.015 | 0.50 | [ |
[Bmim][Ac]@SBA-15 | 48.5 | 25 | 0.1 | 2.11 | [ |
[Apmim][Lys]@PE-SBA-15 | 50 | 30 | 0.1 | 0.88 | [ |
[Teta]L@ZIF-8 | 25 | 25 | 0.1 | 1.53 | [ |
[C4(Vim)2]Br2@CuBTC | 5 | 20 | 0.1 | 4.30 | [ |
P[VCIm]Cl@MA | 50 | 40 | 0.1 | 0.56 | [ |
[Bmim][Gly]@HCM | 60 | 30 | 0.1 | 0.52 | [ |
[Bmim][PF6]@HMDA-HDI | 70 | 20 | 0.1 | 0.07 | [ |
[Emim][2-CNpyr]@C18-GO/PU | 60 | 25 | 0.1 | 0.82 | [ |
Table 1 CO2 adsorption capacity of physically supported ionic liquids
吸附剂(离子液体@载体) | IL负载量/%(mass) | 温度/℃ | 压力/MPa | 吸附量/(mmol CO2/g sorbent) | 文献 |
---|---|---|---|---|---|
[Bmim][NO3]@SiO2 | 50 | 25 | 0.1 | 0.35 | [ |
[Bmim][PF6]@硅胶 | 20 | 0 | 0.1 | 0.84 | [ |
[Emim][Ac]@气相SiO2 | 40 | 40 | 0.1 | 0.82 | [ |
[Apmim][Br]@硅胶 | 40 | 35 | 0.1 | 0.67 | [ |
[N1111][Gly]@硅胶 | 22.4 | 30 | 0.1 | 0.93 | [ |
[P4444][2-Op]@MS | 10 | 50 | 0.1 | 1.68 | [ |
[N2222][Gly]@PDVB | 51 | 30 | 0.1 | 1.63 | [ |
[AEmim][Lys]@PMMA | 50 | 30 | 0.1 | 1.50 | [ |
[EOEOEmim][Gly]@D101 | 38 | 25 | 0.1 | 0.99 | [ |
[Bmim][NTf2]@PSF | 32 | 45 | 0.4 | 1.30 | [ |
[N4444][Ac]@纤维素 | 25 | 25 | 3.0 | 0.72 | [ |
[dmedah][PR]@AC | 10 | 25 | 0.1 | 1.21 | [ |
[vbtma][Gly]@AC | 20 | 25 | 0.1 | 1.51 | [ |
[Emim][Gly]@F600-900 | — | 30 | 0.015 | 0.50 | [ |
[Bmim][Ac]@SBA-15 | 48.5 | 25 | 0.1 | 2.11 | [ |
[Apmim][Lys]@PE-SBA-15 | 50 | 30 | 0.1 | 0.88 | [ |
[Teta]L@ZIF-8 | 25 | 25 | 0.1 | 1.53 | [ |
[C4(Vim)2]Br2@CuBTC | 5 | 20 | 0.1 | 4.30 | [ |
P[VCIm]Cl@MA | 50 | 40 | 0.1 | 0.56 | [ |
[Bmim][Gly]@HCM | 60 | 30 | 0.1 | 0.52 | [ |
[Bmim][PF6]@HMDA-HDI | 70 | 20 | 0.1 | 0.07 | [ |
[Emim][2-CNpyr]@C18-GO/PU | 60 | 25 | 0.1 | 0.82 | [ |
吸附剂(离子液体-载体) | IL负载量/%(mass) | 温度/℃ | 压力/MPa | 吸附量/(mmol CO2/g sorbent) | 文献 |
---|---|---|---|---|---|
[i-C5TPIm][Tf2N]-MS | 5 | 45 | 0.4 | 1.81 | [ |
Si-[P8883][Tf2N]-SiO2 | — | 40 | 0.1 | 0.99 | [ |
P[VYIM][Bu2PO4]-SiO2 | 8.2 | 0 | 0.1 | 1.03 | [ |
P[Amim][BF4]-SiO2 | 5.0 | 0 | 0.1 | 0.87 | [ |
[Bmim][Lys]-OMS | 11.7 | 25 | 0.1 | 0.61 | [ |
P[(META)+CF3 | — | 25 | 0.078 | 2.00 | [ |
Si-P(C8H17)3[Tf2N]-AC | 9.9 | 0 | 0.1 | 2.40 | [ |
Si-P(C8H17)3[Tf2N]-AC | 9.9 | 25 | 0.2 | 1.11 | [ |
[(MeO)3Sipmim][Cl]-MCM-41 | 25 | 25 | 0.1 | 1.49 | [ |
[(MeO)3Sipmim][Cl]-MCM-41 | 25 | 25 | 1 | 2.50 | [ |
[Spmim][PF6]-MCM-41 (2.3nm) | — | 35 | 1 | 0.90 | [ |
[Spmim][PF6]-MCM-41 (3.3nm) | — | 35 | 1 | 0.55 | [ |
[C2NH2mim][Br]-MIL(A) | 9.4 | 0 | 0.1 | 1.93 | [ |
[C2NH2mim][Br]-MIL(B) | 8.1 | 0 | 0.1 | 2.77 | [ |
[C m MOEim][Br]-MA | 8 | 25 | 0.1 | 2.02 | [ |
P[ViEtIm]Br-TiNTs | 46 | 25 | 0.02 | 2.43 | [ |
GO-P[MATMA][BF4] | — | 0 | 0.12 | 0.96 | [ |
DB10%-Pa-TP | — | 0 | 0.1 | 4.83 | [ |
Table 2 CO2 adsorption capacity of chemically supported ionic liquids
吸附剂(离子液体-载体) | IL负载量/%(mass) | 温度/℃ | 压力/MPa | 吸附量/(mmol CO2/g sorbent) | 文献 |
---|---|---|---|---|---|
[i-C5TPIm][Tf2N]-MS | 5 | 45 | 0.4 | 1.81 | [ |
Si-[P8883][Tf2N]-SiO2 | — | 40 | 0.1 | 0.99 | [ |
P[VYIM][Bu2PO4]-SiO2 | 8.2 | 0 | 0.1 | 1.03 | [ |
P[Amim][BF4]-SiO2 | 5.0 | 0 | 0.1 | 0.87 | [ |
[Bmim][Lys]-OMS | 11.7 | 25 | 0.1 | 0.61 | [ |
P[(META)+CF3 | — | 25 | 0.078 | 2.00 | [ |
Si-P(C8H17)3[Tf2N]-AC | 9.9 | 0 | 0.1 | 2.40 | [ |
Si-P(C8H17)3[Tf2N]-AC | 9.9 | 25 | 0.2 | 1.11 | [ |
[(MeO)3Sipmim][Cl]-MCM-41 | 25 | 25 | 0.1 | 1.49 | [ |
[(MeO)3Sipmim][Cl]-MCM-41 | 25 | 25 | 1 | 2.50 | [ |
[Spmim][PF6]-MCM-41 (2.3nm) | — | 35 | 1 | 0.90 | [ |
[Spmim][PF6]-MCM-41 (3.3nm) | — | 35 | 1 | 0.55 | [ |
[C2NH2mim][Br]-MIL(A) | 9.4 | 0 | 0.1 | 1.93 | [ |
[C2NH2mim][Br]-MIL(B) | 8.1 | 0 | 0.1 | 2.77 | [ |
[C m MOEim][Br]-MA | 8 | 25 | 0.1 | 2.02 | [ |
P[ViEtIm]Br-TiNTs | 46 | 25 | 0.02 | 2.43 | [ |
GO-P[MATMA][BF4] | — | 0 | 0.12 | 0.96 | [ |
DB10%-Pa-TP | — | 0 | 0.1 | 4.83 | [ |
1 | Monastersky R. Global carbon dioxide levels near worrisome milestone[J]. Nature, 2013, 497(7447): 13-14. |
2 | 邓旭, 谢俊, 滕飞. 何谓“碳中和”?[J]. 气候变化研究进展, 2021, 17(1): 107-113. |
Deng X, Xie J, Teng F. What is “carbon neutrality”?[J]. Climate Change Research, 2021, 17(1): 107-113. | |
3 | 叶亨利, 余兴光, 张继伟, 等. 我国二氧化碳捕集利用与封存项目环境影响评价对策[J]. 环境与可持续发展, 2017, 42(5): 43-46. |
Ye H L, Yu X G, Zhang J W, et al. Countermeasures on the environmental impact assessment of carbon dioxide capture and storage project in China[J]. Environment and Sustainable Development, 2017, 42(5): 43-46. | |
4 | 张中正. 二氧化碳的吸附分离[D]. 天津:天津大学, 2012. |
Zhang Z Z. Adsorptive separation of carbon dioxide[D]. Tianjin: Tianjin University, 2012. | |
5 | Zhang K, Hou Y C, Wang Y M, et al. Efficient and reversible absorption of CO2 by functional deep eutectic solvents[J]. Energy & Fuels, 2018, 32(7): 7727-7733. |
6 | Glasscock D A, Critchfield J E, Rochelle G T. CO2 absorption/desorption in mixtures of methyldiethanolamine with monoethanolamine or diethanolamine[J]. Chemical Engineering Science, 1991, 46(11): 2829-2845. |
7 | Li X S, Liu J, Jiang W F, et al. Low energy-consuming CO2 capture by phase change absorbents of amine/alcohol/H2O[J]. Separation and Purification Technology, 2021, 275: 119181. |
8 | Heldebrant D J, Yonker C R, Jessop P G, et al. Organic liquid CO2 capture agents with high gravimetric CO2 capacity[J]. Energy & Environmental Science, 2008, 1(4): 487-493. |
9 | Cognigni A, Kampichler S, Bica K. Surface-active ionic liquids in catalysis: impact of structure and concentration on the aerobic oxidation of octanol in water[J]. Journal of Colloid and Interface Science, 2017, 492: 136-145. |
10 | Wang T T, Hu Z Y, Zhang L, et al. Hydrodynamic characteristics of N2-[Bmim][NO3] two-phase Taylor flow in microchannels[J]. Industrial & Engineering Chemistry Research, 2021, 60(47): 17248-17258. |
11 | Li X, Ma N, Zhang L, et al. Applications of choline-based ionic liquids in drug delivery[J]. International Journal of Pharmaceutics, 2022, 612: 121366. |
12 | Lin H C, De Oliveira P W, Veith M. Application of ionic liquids in photopolymerizable holographic materials[J]. Optical Materials, 2011, 33(6): 759-762. |
13 | Blanchard L A, Dan H C, Beckman E J, et al. Green processing using ionic liquids and CO2 [J]. Nature, 1999, 399(6731): 28-29. |
14 | 夏裴文, 丁保宏, 张鹏军, 等. 离子液体及其吸收机理的研究进展[J]. 应用化工, 2019, 48(6): 1469-1473. |
Xia P W, Ding B H, Zhang P J, et al. Research progress on ionic liquids and their absorption mechanism[J]. Applied Chemical Industry, 2019, 48(6): 1469-1473. | |
15 | Wang C M, Luo X Y, Zhu X, et al. The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids[J]. RSC Advances, 2013, 3(36): 15518-15527. |
16 | Huang Y J, Cui G K, Zhao Y L, et al. Preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids[J]. Angewandte Chemie (International Ed. in English), 2017, 56(43): 13293-13297. |
17 | Chen F F, Huang K, Zhou Y, et al. Multi-molar absorption of CO2 by the activation of carboxylate groups in amino acid ionic liquids[J]. Angewandte Chemie (International Ed. in English), 2016, 55(25): 7166-7170. |
18 | 王薪薪, 唐少峰, 吕兴梅, 等. 氨基酸季铵离子液体水溶液的密度和黏度[J]. 中国科学:化学, 2014, 44(6): 1050-1057. |
Wang X X, Tang S F, Lyu X M, et al. The density and viscosity of aqueous solutions of quaternary ammonium-amino acid ionic liquids[J]. Scientia Sinica Chimica, 2014, 44(6): 1050-1057. | |
19 | Kim D H, Baek I H, Hong S U, et al. Study on immobilized liquid membrane using ionic liquid and PVDF hollow fiber as a support for CO2/N2 separation[J]. Journal of Membrane Science, 2011, 372(1/2): 346-354. |
20 | 张锁江, 刘晓敏, 姚晓倩, 等. 离子液体的前沿、进展及应用[J]. 中国科学(B辑:化学), 2009, 39(10): 1134-1144. |
Zhang S J, Liu X M, Yao X Q, et al. Frontiers, progresses and applications of ionic liquids[J]. Science in China (Series B: Chemistry), 2009, 39(10): 1134-1144. | |
21 | Selvam T, Machoke A, Schwieger W. Supported ionic liquids on non-porous and porous inorganic materials—a topical review[J]. Applied Catalysis A: General, 2012, 445: 92-101. |
22 | Tan M, Lu J T, Zhang Y, et al. Ionic liquid confined in mesoporous polymer membrane with improved stability for CO2/N2 separation[J]. Nanomaterials, 2017, 7(10): 299-309. |
23 | 张佩文. 多孔材料负载离子液体在吸收SO2、NO2、CO2中的应用[D]. 石家庄:河北科技大学, 2019. |
Zhang P W. Application of porous material loaded ionic liquids in absorption of SO2, NO2, CO2 [D]. Shijiazhuang: Hebei University of Science and Technology, 2019. | |
24 | 郭艳东, 佟佳欢, 刘晓敏, 等. 负载型离子液体的研究进展及发展趋势[J]. 中国科学:化学, 2016, 46(12): 1305-1316. |
Guo Y D, Tong J H, Liu X M, et al. Recent advances and development of supported ionic liquids[J]. Scientia Sinica Chimica, 2016, 46(12): 1305-1316. | |
25 | Zhang Y Q, Zhang S J, Lu X M, et al. Dual amino-functionalised phosphonium ionic liquids for CO2 capture[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2009, 15(12): 3003-3011. |
26 | Ziobrowski Z, Rotkegel A. Feasibility study of CO2/N2 separation intensification on supported ionic liquid membranes by commonly used impregnation methods[J]. Greenhouse Gases: Science and Technology, 2021, 11(2): 297-312. |
27 | 陈传东, 翟尚儒, 翟滨, 等. 功能离子液体/氧化硅基多孔复合材料[J]. 化学进展, 2010, 22(10): 1921-1928. |
Chen C D, Zhai S R, Zhai B, et al. Functional ionic liquid/porous silica composites[J]. Progress in Chemistry, 2010, 22(10): 1921-1928. | |
28 | Lee K M, Lee Y T, Lin I J B. Supramolecular liquid crystals of amide functionalized imidazolium salts[J]. Journal of Materials Chemistry, 2003, 13(5): 1079-1084. |
29 | Tarkhanova I G, Anisimov A V, Buryak A K, et al. Immobilized ionic liquids based on molybdenum- and tungsten-containing heteropoly acids: structure and catalytic properties in thiophene oxidation[J]. Petroleum Chemistry, 2017, 57(10): 859-867. |
30 | Mirzaei M, Badiei A R, Mokhtarani B, et al. Experimental study on CO2 sorption capacity of the neat and porous silica supported ionic liquids and the effect of water content of flue gas[J]. Journal of Molecular Liquids, 2017, 232: 462-470. |
31 | 董晓晨, 朱佳媚, 孙雅钗, 等. 硅胶负载离子液体的CO2吸附性能影响因素研究[J]. 材料导报, 2015, 29(14): 77-81. |
Dong X C, Zhu J M, Sun Y C, et al. Study on factors influencing CO2 adsorption on ionic liquid-immobilized silica gel[J]. Materials Review, 2015, 29(14): 77-81. | |
32 | Pohako-Esko K, Bahlmann M, Schulz P S, et al. Chitosan containing supported ionic liquid phase materials for CO2 absorption[J]. Industrial & Engineering Chemistry Research, 2016, 55(25): 7052-7059. |
33 | 陈义峰, 王昌松, 丁键, 等. 负载[APMIm][Br]离子液体吸收CO2的性能[J]. 化工学报, 2014, 65(5): 1716-1720. |
Chen Y F, Wang C S, Ding J, et al. CO2 absorption properties of supported [APMIm][Br][J]. CIESC Journal, 2014, 65(5): 1716-1720. | |
34 | 杨刚胜, 曾淦宁, 赵强, 等. 负载型氨基酸离子液体的制备及其对二氧化碳的吸附性能[J]. 燃料化学学报, 2016, 44(1): 106-112. |
Yang G S, Zeng G N, Zhao Q, et al. Preparation of silica gel supported amino acid ionic liquids and their performance capacity towards carbon dioxide[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 106-112. | |
35 | Xue C, Feng L, Zhu H, et al. Pyridine-containing ionic liquids lowly loaded in large mesoporous silica and their rapid CO2 gas adsorption at low partial pressure[J]. Journal of CO2 Utilization, 2019, 34: 282-292. |
36 | Mehnert C P, Cook R A, Dispenziere N C, et al. Supported ionic liquid catalysis—a new concept for homogeneous hydroformylation catalysis[J]. Journal of the American Chemical Society, 2002, 124(44): 12932-12933. |
37 | Xu W L, Zhang J Y, Cheng N N, et al. Facilely synthesized mesoporous polymer for dispersion of amino acid ionic liquid and effective capture of carbon dioxide from anthropogenic source[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 125: 115-121. |
38 | Huang Z, Karami D, Mahinpey N. Study on the efficiency of multiple amino groups in ionic liquids on their sorbents performance for low-temperature CO2 capture[J]. Chemical Engineering Research and Design, 2021, 167: 198-206. |
39 | 徐玉韬, 徐海涛. 多孔树脂负载离子液体作为固体吸附剂用于CO2的捕获[J]. 合成材料老化与应用, 2016, 45(2): 25-31, 59. |
Xu Y T, Xu H T. Porous resin supported ionic liquid as solid sorbents for reversible CO2 capture[J]. Syntheic Materials Aging and Application, 2016, 45(2): 25-31, 59. | |
40 | Nisar M, Bernard F L, Duarte E, et al. New polysulfone microcapsules containing metal oxides and ([BMIM][NTf2]) ionic liquid for CO2 capture[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104781. |
41 | Gabrienko A A, Ewing A V, Chibiryaev A M, et al. New insights into the mechanism of interaction between CO2 and polymers from thermodynamic parameters obtained by in situ ATR-FTIR spectroscopy[J]. Physical Chemistry Chemical Physics, 2016, 18(9): 6465-6475. |
42 | Reed D G, Dowson G R M, Styring P. Cellulose-supported ionic liquids for low-cost pressure swing CO2 capture[J]. Frontiers in Energy Research, 2017, 5: 13-24. |
43 | 叶青. 改性多孔材料常温下吸附分离密闭空间二氧化碳[D]. 杭州:浙江大学, 2012. |
Ye Q. CO2 adsorption from confined space under ambient temperature by modified porous materials[D]. Hangzhou: Zhejiang University, 2012. | |
44 | Wang X H, Cheng H R, Ye G Z, et al. Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: a review[J]. Chemosphere, 2022, 287: 131995. |
45 | Shahrom M S R, Nordin A R, Wilfred C D. The improvement of activated carbon as CO2 adsorbent with supported amine functionalized ionic liquids[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103319. |
46 | Torralba-Calleja E, Skinner J, Gutiérrez-Tauste D. CO2 capture in ionic liquids: a review of solubilities and experimental methods[J]. Journal of Chemistry, 2013, 2013: 473584. |
47 | Erto A, Silvestre-Albero A, Silvestre-Albero J, et al. Carbon-supported ionic liquids as innovative adsorbents for CO2 separation from synthetic flue-gas[J]. Journal of Colloid and Interface Science, 2015, 448: 41-50. |
48 | Pevida C, Drage T C, Snape C E. Silica-templated melamine-formaldehyde resin derived adsorbents for CO2 capture[J]. Carbon, 2008, 46(11): 1464-1474. |
49 | Bui T X, Kang S Y, Lee S H, et al. Organically functionalized mesoporous SBA-15 as sorbents for removal of selected pharmaceuticals from water[J]. Journal of Hazardous Materials, 2011, 193: 156-163. |
50 | Yin J Z, Zhen M Y, Cai P, et al. Supercritical CO2 preparation of SBA-15 supported ionic liquid and its adsorption for CO2 [J]. Materials Research Express, 2018, 5(6): 065060. |
51 | Huang Z L, Mohamedali M, Karami D, et al. Evaluation of supported multi-functionalized amino acid ionic liquid-based sorbents for low temperature CO2 capture[J]. Fuel, 2022, 310: 122284. |
52 | Li Q Y, Ji S F, Hao Z M. Metal-organic framework materials and their applications in catalysis[J]. Progress in Chemistry, 2012, 24(8): 1506-1518. |
53 | Han G, Yu N, Liu D, et al. Stepped enhancement of CO2 adsorption and separation in IL‐ZIF‐IL composites with shell‐interlayer‐core structure[J]. AIChE Journal, 2020, 67(2): 17112-17119. |
54 | Pan R, Guo Y N, Tang Y N, et al. Dicationic liquid containing alkenyl modified CuBTC improves the performance of the composites: increasing the CO2 adsorption effect[J]. Chemical Engineering Journal, 2021, 430(6): 132127. |
55 | Zhou Y, Chang M, Zang X, et al. The polymeric ionic liquids/mesoporous alumina composites: synthesis, characterization and CO2 capture performance test[J]. Polymer Testing, 2020, 81: 106109. |
56 | Romanos G E, Schulz P S, Bahlmann M, et al. CO2 capture by novel supported ionic liquid phase systems consisting of silica nanoparticles encapsulating amine-functionalized ionic liquids[J]. The Journal of Physical Chemistry C, 2014, 118(42): 24437-24451. |
57 | Santiago R, Lemus J, Moya C, et al. Encapsulated ionic liquids to enable the practical application of amino acid-based ionic liquids in CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14178-14187. |
58 | Gaur S S, Edgehouse K J, Klemm A, et al. Capsules with polyurea shells and ionic liquid cores for CO2 capture[J]. Journal of Polymer Science, 2021, 59(23): 2980-2989. |
59 | Lee Y Y, Edgehouse K, Klemm A, et al. Capsules of reactive ionic liquids for selective capture of carbon dioxide at low concentrations[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 19184-19193. |
60 | Jin M J, Taher A, Kang H J, et al. Palladium acetate immobilized in a hierarchical MFI zeolite-supported ionic liquid: a highly active and recyclable catalyst for Suzuki reaction in water[J]. Green Chemistry, 2009, 11(3): 309. |
61 | Thi T N, Van H D, Ha C H, et al. Preparation and properties of colloidal silica-filled natural rubber grafted with poly(methyl methacrylate)[J]. Polymer Bulletin, 2022, 79: 6011-6027. |
62 | Duczinski R, Polesso B B, Bernard F L, et al. Enhancement of CO2/N2 selectivity and CO2 uptake by tuning concentration and chemical structure of imidazolium-based ILs immobilized in mesoporous silica[J]. Journal of Environmental Chemical Engineering, 2020, 8(3): 103740. |
63 | Zhu J M, He B T, Huang J H, et al. Effect of immobilization methods and the pore structure on CO2 separation performance in silica-supported ionic liquids[J]. Microporous and Mesoporous Materials, 2018, 260: 190-200. |
64 | Qiu H, Lv L, Pan B C, et al. Critical review in adsorption kinetic models[J]. Journal of Zhejiang University-Science A, 2009, 10(5): 716-724. |
65 | Sun Y, Zhu J, Huang J, et al. Polymeric ionic liquid modified silica for CO2 adsorption and diffusivity[J]. Polymer Composites, 2017, 38(4): 759-766. |
66 | Hiremath V, Jadhav A H, Lee H, et al. Highly reversible CO2 capture using amino acid functionalized ionic liquids immobilized on mesoporous silica[J]. Chemical Engineering Journal, 2016, 287: 602-617. |
67 | Nemani S K, Annavarapu R K, Mohammadian B, et al. Surface modification of polymers: methods and applications[J]. Advanced Materials Interfaces, 2018, 5(24): 1801247. |
68 | Samadi A, Kemmerlin R K, Husson S M. Polymerized ionic liquid sorbents for CO2 separation[J]. Energy & Fuels, 2010, 24(10): 5797-5804. |
69 | Wang T, Hou C, Ge K, et al. Spontaneous cooling absorption of CO2 by a polymeric ionic liquid for direct air capture[J]. The Journal of Physical Chemistry Letters, 2017, 8(17): 3986-3990. |
70 | Guo Y F, Zhao C W, Li C H. CO2 adsorption kinetics of K2CO3/activated carbon for low-concentration CO2 removal from confined spaces[J]. Chemical Engineering & Technology, 2015, 38(5): 891-899. |
71 | Liu Y, Hu Y H, Zhou J S, et al. Polystyrene-supported novel imidazolium ionic liquids: highly efficient catalyst for the fixation of carbon dioxide under atmospheric pressure[J]. Fuel, 2021, 305: 121495. |
72 | 董晓晨. 活性炭负载离子液体的制备及CO2吸附性能研究[D]. 徐州:中国矿业大学, 2015. |
Dong X C. Synthesis of activated carbon immobilized ionic liquid and CO2 adsorption properties[D]. Xuzhou: China University of Mining and Technology, 2015. | |
73 | He X D, Zhu J M, Wang H M, et al. Surface functionalization of activated carbon with phosphonium ionic liquid for CO2 adsorption[J]. Coatings, 2019, 9(9): 590-601. |
74 | Aquino A S, Bernard F L, Borges J V, et al. Rationalizing the role of the anion in CO2 capture and conversion using imidazolium-based ionic liquid modified mesoporous silica[J]. RSC Advances, 2015, 5(79): 64220-64227. |
75 | Vangeli O C, Romanos G E, Beltsios K G, et al. Grafting of imidazolium based ionic liquid on the pore surface of nanoporous materials: study of physicochemical and thermodynamic properties[J]. The Journal of Physical Chemistry. B, 2010, 114(19): 6480-6491. |
76 | Wilson M, Barrientos-Palomo S N, Stevens P C, et al. Substrate-independent epitaxial growth of the metal-organic framework MOF-508a[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4057-4065. |
77 | Bahadori M, Marandi A, Tangestaninejad S, et al. Ionic liquid-decorated MIL-101(Cr) via covalent and coordination bonds for efficient solvent-free CO2 conversion and CO2 capture at low pressure[J]. The Journal of Physical Chemistry C, 2020, 124(16): 8716-8725. |
78 | Sun L W, Yin M L, Tang S K. Bi-functionalized ionic liquid-grafted mesoporous alumina: synthesis, characterization and CO2/N2 selectivity[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105829. |
79 | Yuan J, Fan M L, Zhang F F, et al. Amine-functionalized poly(ionic liquid) brushes for carbon dioxide adsorption[J]. Chemical Engineering Journal, 2017, 316: 903-910. |
80 | Huang L, Jin Y, Sun L, et al. Graphene oxide functionalized by poly(ionic liquid)s for carbon dioxide capture[J]. Journal of Applied Polymer Science, 2017, 134(11): 44592. |
81 | Cao J J, Shan W J, Wang Q, et al. Ordered porous poly(ionic liquid) crystallines: spacing confined ionic surface enhancing selective CO2 capture and fixation[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6031-6041. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[3] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[4] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[5] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[6] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[7] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[8] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[9] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[10] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[11] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[12] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[13] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[14] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[15] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||