CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1939-1950.DOI: 10.11949/0438-1157.20231182
• Process system engineering • Previous Articles Next Articles
Guangyao ZHAO1(), Minglei YANG1,2(), Feng QIAN1()
Received:
2023-11-15
Revised:
2024-03-12
Online:
2024-06-25
Published:
2024-05-25
Contact:
Minglei YANG, Feng QIAN
通讯作者:
杨明磊,钱锋
作者简介:
赵光耀(1993—),男,博士研究生,1029149158@qq.com
基金资助:
CLC Number:
Guangyao ZHAO, Minglei YANG, Feng QIAN. Variance reduction sampling strategy-based stochastic reconstruction method[J]. CIESC Journal, 2024, 75(5): 1939-1950.
赵光耀, 杨明磊, 钱锋. 基于降方差采样策略的随机重构法[J]. 化工学报, 2024, 75(5): 1939-1950.
Add to citation manager EndNote|Ris|BibTeX
性 质 | 实验值 | 性 质 | 实验值 | 性 质 | 实验值 |
---|---|---|---|---|---|
密度/(g/cm3) | 0.9127 | 硫元素组成/10-6 | 模拟蒸馏/K | ||
碳元素/%(质量分数) | 85.68 | 四氢苯并噻吩 | 566 | 初馏点 | 482 |
氢元素/%(质量分数) | 12.38 | 苯并噻吩 | 7681 | 5% | 605 |
硫元素/%(质量分数) | 2.24 | 四氢二苯并噻吩 | 853 | 10% | 637 |
氮元素/10-6 | 456 | 二苯并噻吩 | 7141 | 20% | 670 |
氢碳比(摩尔比) | 1.72 | 四氢苯并萘噻吩 | 1269 | 30% | 693 |
SARA组成/%(质量分数) | 苯并萘噻吩 | 3393 | 40% | 710 | |
饱和烃 | 64.2 | 二苯并萘噻吩 | 1507 | 50% | 725 |
芳烃 | 35.8 | 13C核磁/%(质量分数) | 60% | 739 | |
同系物组成/%(质量分数) | 脂肪烃 CH3 | 14.5 | 70% | 753 | |
烷烃 | 22.1 | 脂肪烃 CH2 | 52.5 | 80% | 768 |
环烷烃 | 42.0 | 脂肪烃 CH | 16.2 | 90% | 785 |
单环芳烃 | 6.1 | 芳烃 CH | 9.7 | 95% | 797 |
双环芳烃 | 12.5 | 芳烃取代位 C | 6.3 | 终馏点 | 827 |
三环芳烃 | 10.4 | 芳烃桥位 C | 0.8 | ||
四环芳烃 | 6.2 | ||||
五环芳烃 | 0.7 |
Table 1 Properties of VGO sample
性 质 | 实验值 | 性 质 | 实验值 | 性 质 | 实验值 |
---|---|---|---|---|---|
密度/(g/cm3) | 0.9127 | 硫元素组成/10-6 | 模拟蒸馏/K | ||
碳元素/%(质量分数) | 85.68 | 四氢苯并噻吩 | 566 | 初馏点 | 482 |
氢元素/%(质量分数) | 12.38 | 苯并噻吩 | 7681 | 5% | 605 |
硫元素/%(质量分数) | 2.24 | 四氢二苯并噻吩 | 853 | 10% | 637 |
氮元素/10-6 | 456 | 二苯并噻吩 | 7141 | 20% | 670 |
氢碳比(摩尔比) | 1.72 | 四氢苯并萘噻吩 | 1269 | 30% | 693 |
SARA组成/%(质量分数) | 苯并萘噻吩 | 3393 | 40% | 710 | |
饱和烃 | 64.2 | 二苯并萘噻吩 | 1507 | 50% | 725 |
芳烃 | 35.8 | 13C核磁/%(质量分数) | 60% | 739 | |
同系物组成/%(质量分数) | 脂肪烃 CH3 | 14.5 | 70% | 753 | |
烷烃 | 22.1 | 脂肪烃 CH2 | 52.5 | 80% | 768 |
环烷烃 | 42.0 | 脂肪烃 CH | 16.2 | 90% | 785 |
单环芳烃 | 6.1 | 芳烃 CH | 9.7 | 95% | 797 |
双环芳烃 | 12.5 | 芳烃取代位 C | 6.3 | 终馏点 | 827 |
三环芳烃 | 10.4 | 芳烃桥位 C | 0.8 | ||
四环芳烃 | 6.2 | ||||
五环芳烃 | 0.7 |
序数 | 结构特征 | 缩写 | 分布类型 | 数值 范围 | 参数 | 采样数量 |
---|---|---|---|---|---|---|
1 | 分子类型 | SA1 | 直方图分布 | 1,2或3 | x1, x2 | n1 |
2 | 链烷烃上是否 存在侧链 | SA2 | 直方图分布 | 0或1 | x3 | n2 |
3 | 链烷烃上侧链的 数量 | SA3 | 直方图分布 | 1,2或3 | x4, x5 | n3 |
4 | 链烷烃的长度 | SA4 | 伽马分布 | 10~40 | x6, x7 | n4 |
5 | 脂肪环数量 | SA5 | 伽马分布 | 1~6 | x8, x9 | n5 |
6 | 苯环数量 | SA6 | 伽马分布 | 1~5 | x10, x11 | n6 |
7 | 芳烃中脂肪环数量 | SA7 | 直方图分布 | 0,1或2 | x12, x13 | n7 |
8 | 噻吩环数量 | SA8 | 直方图分布 | 0或1 | x14 | n8 |
9 | 吡咯环数量 | SA9 | 直方图分布 | 0或1 | x15 | n9 |
10 | 吡啶环数量 | SA10 | 直方图分布 | 0或1 | x16 | n10 |
11 | 环状结构上侧链的数量 | SA11 | 直方图分布 | 1,2,3或 4 | x17, x18, x19 | n11 |
12 | 环状结构上侧链的长度 | SA12 | 伽马分布 | 1~29 | x20, x21 | n12 |
Table 2 Setting of structural attributes
序数 | 结构特征 | 缩写 | 分布类型 | 数值 范围 | 参数 | 采样数量 |
---|---|---|---|---|---|---|
1 | 分子类型 | SA1 | 直方图分布 | 1,2或3 | x1, x2 | n1 |
2 | 链烷烃上是否 存在侧链 | SA2 | 直方图分布 | 0或1 | x3 | n2 |
3 | 链烷烃上侧链的 数量 | SA3 | 直方图分布 | 1,2或3 | x4, x5 | n3 |
4 | 链烷烃的长度 | SA4 | 伽马分布 | 10~40 | x6, x7 | n4 |
5 | 脂肪环数量 | SA5 | 伽马分布 | 1~6 | x8, x9 | n5 |
6 | 苯环数量 | SA6 | 伽马分布 | 1~5 | x10, x11 | n6 |
7 | 芳烃中脂肪环数量 | SA7 | 直方图分布 | 0,1或2 | x12, x13 | n7 |
8 | 噻吩环数量 | SA8 | 直方图分布 | 0或1 | x14 | n8 |
9 | 吡咯环数量 | SA9 | 直方图分布 | 0或1 | x15 | n9 |
10 | 吡啶环数量 | SA10 | 直方图分布 | 0或1 | x16 | n10 |
11 | 环状结构上侧链的数量 | SA11 | 直方图分布 | 1,2,3或 4 | x17, x18, x19 | n11 |
12 | 环状结构上侧链的长度 | SA12 | 伽马分布 | 1~29 | x20, x21 | n12 |
参数 | 下限 | 上限 | 递增约束 | 参数 | 下限 | 上限 | 递增约束 |
---|---|---|---|---|---|---|---|
x1, x2 | 0 | 1 | x1< x2 | x10 | 0 | 20 | |
x3, x14, x15, x16 | 0 | 1 | x11 | 0 | 6 | ||
x4, x5 | 0 | 1 | x4< x5 | x12, x13 | 0 | 1 | x12< x13 |
x6 | 1 | 20 | x17, x18, x19 | 0 | 1 | x17< x18< x19 | |
x7 | 9 | 41 | x20 | 1 | 20 | ||
x8 | 0 | 20 | x21 | 0 | 30 | ||
x9 | 0 | 7 |
Table 3 Boundaries for parameters and constraints for parameters in histogram distributions
参数 | 下限 | 上限 | 递增约束 | 参数 | 下限 | 上限 | 递增约束 |
---|---|---|---|---|---|---|---|
x1, x2 | 0 | 1 | x1< x2 | x10 | 0 | 20 | |
x3, x14, x15, x16 | 0 | 1 | x11 | 0 | 6 | ||
x4, x5 | 0 | 1 | x4< x5 | x12, x13 | 0 | 1 | x12< x13 |
x6 | 1 | 20 | x17, x18, x19 | 0 | 1 | x17< x18< x19 | |
x7 | 9 | 41 | x20 | 1 | 20 | ||
x8 | 0 | 20 | x21 | 0 | 30 | ||
x9 | 0 | 7 |
分子序数 | SA1 | SA2 | SA3 | SA4 |
---|---|---|---|---|
1 | s1,1 | — | — | — |
2 | s2,1 | s1,2 | s1,3 | s1,4 |
3 | s3,1 | s2,2 | — | s2,4 |
4 | s4,1 | — | — | — |
5 | s5,1 | s3,2 | s2,3 | s3,4 |
6 | s6,1 | s4,2 | — | s4,4 |
︙ | ︙ | ︙ | ︙ | ︙ |
k2 | ︙ | ︙ | ||
︙ | ︙ | ︙ | — | ︙ |
k1 | — | |||
︙ | ︙ | — | — | — |
n | — | — | — |
Table 4 Alignment of structural attribute values in paraffins
分子序数 | SA1 | SA2 | SA3 | SA4 |
---|---|---|---|---|
1 | s1,1 | — | — | — |
2 | s2,1 | s1,2 | s1,3 | s1,4 |
3 | s3,1 | s2,2 | — | s2,4 |
4 | s4,1 | — | — | — |
5 | s5,1 | s3,2 | s2,3 | s3,4 |
6 | s6,1 | s4,2 | — | s4,4 |
︙ | ︙ | ︙ | ︙ | ︙ |
k2 | ︙ | ︙ | ||
︙ | ︙ | ︙ | — | ︙ |
k1 | — | |||
︙ | ︙ | — | — | — |
n | — | — | — |
工况 | 分子数量 | 工况 | 分子数量 | 工况 | 分子数量 |
---|---|---|---|---|---|
1 | 1000 | 6 | 6000 | 11 | 20000 |
2 | 2000 | 7 | 7000 | 12 | 30000 |
3 | 3000 | 8 | 8000 | 13 | 40000 |
4 | 4000 | 9 | 9000 | 14 | 50000 |
5 | 5000 | 10 | 10000 |
Table 5 Number of molecules in different cases
工况 | 分子数量 | 工况 | 分子数量 | 工况 | 分子数量 |
---|---|---|---|---|---|
1 | 1000 | 6 | 6000 | 11 | 20000 |
2 | 2000 | 7 | 7000 | 12 | 30000 |
3 | 3000 | 8 | 8000 | 13 | 40000 |
4 | 4000 | 9 | 9000 | 14 | 50000 |
5 | 5000 | 10 | 10000 |
性 质 | 实验值 | 文献[ | 传统模型 | 本模型 |
---|---|---|---|---|
密度/(g/cm3) | 0.9127 | 0.9170 | 0.9269 | 0.9292 |
碳元素/%(质量分数) | 85.68 | 85.40 | 85.54 | 85.51 |
氢元素/%(质量分数) | 12.38 | 12.30 | 12.30 | 12.18 |
硫元素/%(质量分数) | 2.24 | 2.24 | 2.12 | 2.26 |
氮元素/10-6 | 456 | 608 | 458 | 448 |
氢碳比(摩尔比) | 1.72 | 1.72 | 1.72 | 1.71 |
SARA组成/%(质量分数) | ||||
饱和烃 | 64.2 | 64.1 | 63.6 | 63.8 |
芳烃 | 35.8 | 35.9 | 36.4 | 36.2 |
同系物组成/%(质量分数) | ||||
烷烃 | 22.1 | 21.3 | 23.2 | 21.9 |
环烷烃 | 42.0 | 42.8 | 39.9 | 41.9 |
单环芳烃 | 6.1 | 6.2 | 6.2 | 5.4 |
双环芳烃 | 12.5 | 13.2 | 11.5 | 11.9 |
三环芳烃 | 10.4 | 9.8 | 10.2 | 10.3 |
四环芳烃 | 6.2 | 5.0 | 5.9 | 5.7 |
五环芳烃 | 0.7 | 1.8 | 3.0 | 3.0 |
硫元素组成/10-6 | ||||
四氢苯并噻吩 | 566 | 577 | 555 | 491 |
苯并噻吩 | 7681 | 7772 | 8194 | 8469 |
四氢二苯并噻吩 | 853 | 904 | 853 | 981 |
二苯并噻吩 | 7141 | 7061 | 5916 | 6628 |
四氢苯并萘噻吩 | 1269 | 1126 | 845 | 1023 |
苯并萘噻吩 | 3393 | 3391 | 3300 | 3478 |
二苯并萘噻吩 | 1507 | 1592 | 1538 | 1514 |
13C核磁/%(质量分数) | ||||
脂肪烃 CH3 | 14.5 | 13.0 | 14.6 | 14.2 |
脂肪烃 CH2 | 52.5 | 54.3 | 56.0 | 55.9 |
脂肪烃 CH | 16.2 | 15.9 | 15.7 | 16.0 |
芳烃 CH | 9.7 | 8.0 | 5.4 | 5.2 |
芳烃取代位 C | 6.3 | 4.3 | 4.0 | 4.3 |
芳烃桥位 C | 0.8 | 4.4 | 4.3 | 4.4 |
Table 6 Comparison of bulk properties between estimation and experiment
性 质 | 实验值 | 文献[ | 传统模型 | 本模型 |
---|---|---|---|---|
密度/(g/cm3) | 0.9127 | 0.9170 | 0.9269 | 0.9292 |
碳元素/%(质量分数) | 85.68 | 85.40 | 85.54 | 85.51 |
氢元素/%(质量分数) | 12.38 | 12.30 | 12.30 | 12.18 |
硫元素/%(质量分数) | 2.24 | 2.24 | 2.12 | 2.26 |
氮元素/10-6 | 456 | 608 | 458 | 448 |
氢碳比(摩尔比) | 1.72 | 1.72 | 1.72 | 1.71 |
SARA组成/%(质量分数) | ||||
饱和烃 | 64.2 | 64.1 | 63.6 | 63.8 |
芳烃 | 35.8 | 35.9 | 36.4 | 36.2 |
同系物组成/%(质量分数) | ||||
烷烃 | 22.1 | 21.3 | 23.2 | 21.9 |
环烷烃 | 42.0 | 42.8 | 39.9 | 41.9 |
单环芳烃 | 6.1 | 6.2 | 6.2 | 5.4 |
双环芳烃 | 12.5 | 13.2 | 11.5 | 11.9 |
三环芳烃 | 10.4 | 9.8 | 10.2 | 10.3 |
四环芳烃 | 6.2 | 5.0 | 5.9 | 5.7 |
五环芳烃 | 0.7 | 1.8 | 3.0 | 3.0 |
硫元素组成/10-6 | ||||
四氢苯并噻吩 | 566 | 577 | 555 | 491 |
苯并噻吩 | 7681 | 7772 | 8194 | 8469 |
四氢二苯并噻吩 | 853 | 904 | 853 | 981 |
二苯并噻吩 | 7141 | 7061 | 5916 | 6628 |
四氢苯并萘噻吩 | 1269 | 1126 | 845 | 1023 |
苯并萘噻吩 | 3393 | 3391 | 3300 | 3478 |
二苯并萘噻吩 | 1507 | 1592 | 1538 | 1514 |
13C核磁/%(质量分数) | ||||
脂肪烃 CH3 | 14.5 | 13.0 | 14.6 | 14.2 |
脂肪烃 CH2 | 52.5 | 54.3 | 56.0 | 55.9 |
脂肪烃 CH | 16.2 | 15.9 | 15.7 | 16.0 |
芳烃 CH | 9.7 | 8.0 | 5.4 | 5.2 |
芳烃取代位 C | 6.3 | 4.3 | 4.0 | 4.3 |
芳烃桥位 C | 0.8 | 4.4 | 4.3 | 4.4 |
1 | Ren Y, Liao Z, Sun J, et al. Molecular reconstruction: recent progress toward composition modeling of petroleum fractions[J]. Chemical Engineering Journal, 2019, 357: 761-775. |
2 | Chen Z, Wang Y, Li Y, et al. Explicit molecule-based reaction network simplification: theory and application on catalytic reforming[J]. Chemical Engineering Science, 2023, 277: 118833. |
3 | Zhang Y, Zhou Z, Zhang X, et al. Molecular characterization of heavy olefins in slurry-phase hydrocracking products using high-resolution mass spectrometry[J]. Energy & Fuels, 2023, 37(16): 11743-11753. |
4 | Chen Z, Wang G, Zhao S, et al. A molecular kinetic model for heavy gas oil catalytic pyrolysis to light olefins[J]. AIChE Journal, 2023, 69(8): e18116. |
5 | Guan D, Cai G, Zhang L. Dual-objective optimization for petroleum molecular reconstruction based on property and composition similarities[J]. AIChE Journal, 2023, 69(8): e18108. |
6 | Bi K, Qiu T. Novel naphtha molecular reconstruction process using a self-adaptive cloud model and hybrid genetic algorithm-particle swarm optimization algorithm[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16753-16760. |
7 | Chen J, Fang Z, Qiu T. Molecular reconstruction model based on structure oriented lumping and group contribution methods[J]. Chinese Journal of Chemical Engineering, 2018, 26(8): 1677-1683. |
8 | Quann R J, Jaffe S B. Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures[J]. Industrial & Engineering Chemistry Research, 1992, 31(11): 2483-2497. |
9 | Jaffe S B, Freund H, Olmstead W N. Extension of structure-oriented lumping to vacuum residua[J]. Industrial & Engineering Chemistry Research, 2005, 44(26): 9840-9852. |
10 | Quann R J, Jaffe S B. Additions and corrections: structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures[J]. Industrial & Engineering Chemistry Research, 1993, 32(8): 1800. |
11 | Ye L, Liu J, Xing B, et al. Molecular-level reaction network in delayed coking process based on structure-oriented lumping[J]. Chemical Engineering Science, 2021, 246: 116981. |
12 | Qin X, Ye L, Murad A, et al. Reaction network and molecular distribution of sulfides in gasoline and diesel of FCC process[J]. Fuel, 2022, 319: 123567. |
13 | Trauth D M, Stark S M, Petti T F, et al. Representation of the molecular structure of petroleum resid through characterization and Monte Carlo modeling[J]. Energy & Fuels, 1994, 8(3): 576-580. |
14 | Agarwal P, Sahasrabudhe M, Khandalkar S, et al. Molecular-level kinetic modeling of a real vacuum gas oil hydroprocessing refinery system[J]. Energy & Fuels, 2019, 33(10): 10143-10158. |
15 | Aye M M S, Zhang N. A novel methodology in transforming bulk properties of refining streams into molecular information[J]. Chemical Engineering Science, 2005, 60(23): 6702-6717. |
16 | Gomez Prado J, Zhang N, Theodoropoulos C. Characterisation of heavy petroleum fractions using modified molecular-type homologous series (MTHS) representation[J]. Energy, 2008, 33(6): 974-987. |
17 | Wu Y. Molecular management for refining operations[D]. Manchester: University of Manchester, 2010. |
18 | Liu L. Molecular characterisation and modelling for refining processes[D]. Manchester: University of Manchester, 2015. |
19 | Ren Y, Liao Z, Sun J, et al. Molecular reconstruction of naphtha via limited bulk properties: methods and comparisons[J]. Industrial & Engineering Chemistry Research, 2019, 58(40): 18742-18755. |
20 | Hudebine D, Verstraete J J. Molecular reconstruction of LCO gasoils from overall petroleum analyses[J]. Chemical Engineering Science, 2004, 59(22-23): 4755-4763. |
21 | Van Geem K M, Hudebine D, Reyniers M F, et al. Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices[J]. Computers & Chemical Engineering 2007, 31(9): 1020-1034. |
22 | Verstraete J J, Schnongs P, Dulot H, et al. Molecular reconstruction of heavy petroleum residue fractions[J]. Chemical Engineering Science, 2010, 65(1): 304-312. |
23 | Van Geem K M, Reyniers M F, Marin G B. Challenges of modeling steam cracking of heavy feedstocks[J]. Oil & Gas Science and Technology-Rev. IFP, 2008, 63(1): 79-94. |
24 | Klein M T, Neurock M, Nigam A, et al. In Monte Carlo modeling of complex reaction systems: an asphaltene example[M]//Sapre E A M. Chemical Reactions in Complex Mixtures. New York: Van Nostrand Reinhold, 1991: 126-142. |
25 | Neurock M, Nigam A, Trauth D, et al. Molecular representation of complex hydrocarbon feedstocks through efficient characterization and stochastic algorithms[J]. Chemical Engineering Science, 1994, 49(24): 4153-4177. |
26 | Petti T F, Trauth D M, Stark S M, et al. CPU issues in the representation of the molecular structure of petroleum resid through characterization, reaction, and monte carlo modeling[J]. Energy & Fuels, 1994, 8(3): 570-585. |
27 | Campbell D M, Klein M T. Construction of a molecular representation of a complex feedstock by Monte Carlo and quadrature methods[J]. Applied Catalysis A: General, 1997, 160(1): 41-54. |
28 | Campbell D M, Klein M T. Structural attribute reaction model for heavy hydrocarbons[J]. American Chemical Society, Division of Petroleum Chemistry, Preprints, 1997, 42(2): 300-302. |
29 | Horton S R, Zhang L, Hou Z, et al. Molecular-level kinetic modeling of resid pyrolysis[J]. Industrial & Engineering Chemistry Research, 2015, 54(16): 4226-4235. |
30 | Zhang L, Hou Z, Horton S R, et al. Molecular representation of petroleum vacuum resid[J]. Energy & Fuels, 2014, 28(3): 1736-1749. |
31 | Alvarez-Majmutov A, Chen J W, Gieleciak R. Molecular-level modeling and simulation of vacuum gas oil hydrocracking[J]. Energy & Fuels, 2016, 30(1): 138-148. |
32 | Deniz C U, Yasar M, Klein M T. A new extended structural parameter set for stochastic molecular reconstruction: application to asphaltenes[J]. Energy & Fuels, 2017, 31(8): 7919-7931. |
33 | Deniz C U, Yasar M, Klein M T. Stochastic reconstruction of complex heavy oil molecules using an artificial neural network[J]. Energy & Fuels, 2017, 31(11): 11932-11938. |
34 | Deniz C U, Yasar S H O, Yasar M, et al. Effect of boiling point and density prediction methods on stochastic reconstruction[J]. Energy & Fuels, 2018, 32(3): 3344-3355. |
35 | Gani R, Nielsen B, Fredenslund A. A group contribution approach to computer-aided molecular design[J]. AIChE Journal, 1991, 37(9): 1318-1332. |
36 | Marrero J, Gani R. Group-contribution based estimation of pure component properties[J]. Fluid Phase Equilibria, 2001, 183: 183-208. |
37 | Hukkerikar A S, Sarup B, Ten Kate A, et al. Group-contribution+ (GC+) based estimation of properties of pure components: improved property estimation and uncertainty analysis[J]. Fluid Phase Equilibria, 2012, 321: 25-43. |
38 | Yen L C, Woods S S. A generalized equation for computer calculation of liquid densities[J]. AIChE Journal, 1966, 12(1): 95-99. |
39 | Haktanır M, Karahan S, Yaşar M. Structurally explicit composition model of petroleum vacuum residue[J]. Fuel, 2021, 300: 120977. |
40 | Glazov N, Dik P, Zagoruiko A. Effect of experimental data accuracy on stochastic reconstruction of complex hydrocarbon mixture[J]. Catalysis Today, 2021, 378: 202-210. |
41 | Horton S R, Mohr R J, Zhang Y, et al. Molecular-level kinetic modeling of biomass gasification[J]. Energy & Fuels, 2016, 30(3): 1647-1661. |
42 | Horton S R, Klein M T. Reaction and catalyst families in the modeling of coal and biomass hydroprocessing kinetics[J]. Energy & Fuels, 2014, 28(1): 37-40. |
43 | Dufour R, Labeau P E, Henneaux P, et al. Stochastic optimization for reactive power planning problems[C]//2016 IEEE International Energy Conference (ENERGYCON). IEEE, 2016: 1-6. |
44 | Henderson S G, Nelson B L. Handbooks in Operations Research and Management Science: Simulation[M]. Amsterdam: Elsevier, 2006. |
45 | Amaran S, Sahinidis N, Sharda B, et al. Simulation optimization: a review of algorithms and applications[J]. Annals of Operations Research, 2016, 240: 351-380. |
46 | Rubinstein R Y, Kroese D P. Simulation and the Monte Carlo Method[M]. MYSE: John Wiley & Sons, 2016. |
47 | Loh W L. On Latin hypercube sampling[J]. The Annals of Statistics, 1996, 24(5): 2058-2080. |
48 | Alvarez Majmutov A, Gieleciak R, Chen J W. Deriving the molecular composition of vacuum distillates by integrating statistical modeling and detailed hydrocarbon characterization[J]. Energy & Fuels, 2015, 29(12): 7931-7940. |
49 | Das S, Suganthan P N. Differential evolution: a survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4-31. |
50 | Chen B, Zeng W, Lin Y, et al. An enhanced differential evolution based algorithm with simulated annealing for solving multiobjective optimization problems[J]. Journal of Applied Mathematics, 2014:1-13. |
51 | Ali M Z, Awad N H, Suganthan P N. Multi-population differential evolution with balanced ensemble of mutation strategies for large-scale global optimization[J]. Applied Soft Computing, 2015, 33: 304-327. |
[1] | Jinshan WANG, Shixue WANG, Yu ZHU. Influence of cooling surface temperature difference on the high temperature proton-exchange membrane fuel cell performance [J]. CIESC Journal, 2024, 75(5): 2026-2035. |
[2] | Yifei LI, Xinyu DONG, Weishu WANG, Lu LIU, Yifan ZHAO. Numerical study on heat transfer of dry ice sublimation spray cooling on the surface of micro-ribbed plate [J]. CIESC Journal, 2024, 75(5): 1830-1842. |
[3] | Di WANG, Weiqian CHEN, Lingfang SUN, Yunlong ZHOU. Research of dynamic characteristics of photothermal coupled transcritical compressed carbon dioxide energy storage cycle [J]. CIESC Journal, 2024, 75(5): 2047-2059. |
[4] | Fan LIU, Yuantong ZHANG, Cheng TAO, Chengyu HU, Xiaoping YANG, Jinjia WEI. Performance of manifold microchannel liquid cooling [J]. CIESC Journal, 2024, 75(5): 1777-1786. |
[5] | Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels [J]. CIESC Journal, 2024, 75(5): 1802-1815. |
[6] | Hansong QIN, Guoliang LI, Hao YAN, Xiang FENG, Yibin LIU, Xiaobo CHEN, Chaohe YANG. Theoretical study on the adsorption and diffusion behavior of methyl oleate catalytic cracking in hierarchical ZSM-5 zeolite [J]. CIESC Journal, 2024, 75(5): 1870-1881. |
[7] | Jing LI, Fangfang ZHANG, Shuaishuai WANG, Jianhua XU, Pengyuan ZHANG. Effect of cavity structure on flammability limit of n-butane partially premixed flame [J]. CIESC Journal, 2024, 75(5): 2081-2090. |
[8] | Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures [J]. CIESC Journal, 2024, 75(5): 1787-1801. |
[9] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[10] | Kang ZHOU, Jianxin WANG, Hai YU, Chaoliang WEI, Fengqi FAN, Xinhao CHE, Lei ZHANG. Foam rupture properties of mineral base oils based on molecular dynamics simulation [J]. CIESC Journal, 2024, 75(4): 1668-1678. |
[11] | Dongfei LIU, Fan ZHANG, Zheng LIU, Diannan LU. A review of machine learning potentials and their applications to molecular simulation [J]. CIESC Journal, 2024, 75(4): 1241-1255. |
[12] | Zheng ZHANG, Wuqiong WANG, Yajing ZHANG, Kangjun WANG, Yuanhui JI. Research progress in theoretical calculation of pharmaceutical formulation design [J]. CIESC Journal, 2024, 75(4): 1429-1438. |
[13] | Xiaoying JI, Yuan ZHENG, Xiaopeng LI, Zhen YANG, Wei ZHANG, Shirui QIU, Qianying ZHANG, Canghai LUO, Dongpeng SUN, Dong CHEN, Dongliang LI. Controlled preparation of droplets, particles and capsules by microfluidics and their applications [J]. CIESC Journal, 2024, 75(4): 1455-1468. |
[14] | Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation [J]. CIESC Journal, 2024, 75(4): 1370-1381. |
[15] | Yujiao ZENG, Xin XIAO, Gang YANG, Yibo ZHANG, Guangming ZHENG, Fang LI, Fengling WANG. Surrogate modeling and optimization of wet phosphoric acid production process based on mechanism and data hybrid driven [J]. CIESC Journal, 2024, 75(3): 936-944. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||