CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5114-5127.DOI: 10.11949/0438-1157.20250252
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yupeng DU1(
), Chunliang GE2, Leilin DING1, Li ZHANG2, Jiajun HU1, Fengping YU2, Yi LIN1, Feng WANG1, Shi JIANG1, Yu GUO1(
)
Received:2025-03-14
Revised:2025-06-05
Online:2025-11-25
Published:2025-10-25
Contact:
Yu GUO
杜宇鹏1(
), 葛春亮2, 丁垒琳1, 张力2, 胡家俊1, 俞峰苹2, 林益1, 王峰1, 蒋师1, 郭燏1(
)
通讯作者:
郭燏
作者简介:杜宇鹏(2000—),男,硕士研究生,202261104180@njtech.edu.cn
基金资助:CLC Number:
Yupeng DU, Chunliang GE, Leilin DING, Li ZHANG, Jiajun HU, Fengping YU, Yi LIN, Feng WANG, Shi JIANG, Yu GUO. CO oxidation performance of Pt catalysts supported on CeO2-Al2O3 supports synthesized via urea homogeneous precipitation[J]. CIESC Journal, 2025, 76(10): 5114-5127.
杜宇鹏, 葛春亮, 丁垒琳, 张力, 胡家俊, 俞峰苹, 林益, 王峰, 蒋师, 郭燏. 尿素均匀沉淀法合成CeO2-Al2O3载体负载Pt催化剂的CO氧化性能[J]. 化工学报, 2025, 76(10): 5114-5127.
Add to citation manager EndNote|Ris|BibTeX
| Sample | Specific surface area/(m2/g) | Total pore volume/(cm3/g) | Average pore diameter/nm | CeO2 grain size①/nm | Pt dispersion②/% | T90/℃ |
|---|---|---|---|---|---|---|
| Pt/CeAl-PAH | 133 | 0.463 | 14.0 | 5.6 | 29 | 165 |
| Pt/CeAl-PAC | 130 | 0.459 | 14.1 | 11.8 | 49 | 161 |
| Pt/CeAl-PAB | 133 | 0.461 | 13.9 | 13.0 | 63 | 159 |
| Pt/CeAl-HPU | 133 | 0.449 | 13.6 | 9.3 | 69 | 149 |
| Pt/CeAl-I | 112 | 0.425 | 15.2 | 8.9 | 57 | 162 |
| Pt/Al-I | 140 | 0.476 | 13.3 | — | 41 | 174 |
| Al2O3 | 142 | 0.478 | 13.5 | — | — | — |
Table 1 Specific surface area, pore volume, pore size, CeO2 grain size, Pt dispersion, and T90 on different catalysts
| Sample | Specific surface area/(m2/g) | Total pore volume/(cm3/g) | Average pore diameter/nm | CeO2 grain size①/nm | Pt dispersion②/% | T90/℃ |
|---|---|---|---|---|---|---|
| Pt/CeAl-PAH | 133 | 0.463 | 14.0 | 5.6 | 29 | 165 |
| Pt/CeAl-PAC | 130 | 0.459 | 14.1 | 11.8 | 49 | 161 |
| Pt/CeAl-PAB | 133 | 0.461 | 13.9 | 13.0 | 63 | 159 |
| Pt/CeAl-HPU | 133 | 0.449 | 13.6 | 9.3 | 69 | 149 |
| Pt/CeAl-I | 112 | 0.425 | 15.2 | 8.9 | 57 | 162 |
| Pt/Al-I | 140 | 0.476 | 13.3 | — | 41 | 174 |
| Al2O3 | 142 | 0.478 | 13.5 | — | — | — |
| Sample | Ce atomic concentration/% | [Pt0/(Pt δ++Pt0)]/% | [Ce3+/(Ce3++Ce4+)]/% | [Osur/(Osur+Olat)]/% |
|---|---|---|---|---|
| Pt/CeAl-PAH | 7.8 | 20.7 | 13.6 | 36.4 |
| Pt/CeAl-PAC | 9.9 | 27.2 | 15.3 | 38.0 |
| Pt/CeAl-PAB | 8.6 | 21.6 | 14.5 | 38.2 |
| Pt/CeAl-HPU | 1.7 | 51.2 | 20.8 | 43.0 |
| Pt/CeAl-I | 4.0 | 18.7 | 15.3 | 38.3 |
| Pt/Al-I | — | 30.6 | — | 32.6 |
Table 2 Surface Ce atomic concentration, Pt0 ratio, Ce3+ ratio, and Osur ratio on different catalysts
| Sample | Ce atomic concentration/% | [Pt0/(Pt δ++Pt0)]/% | [Ce3+/(Ce3++Ce4+)]/% | [Osur/(Osur+Olat)]/% |
|---|---|---|---|---|
| Pt/CeAl-PAH | 7.8 | 20.7 | 13.6 | 36.4 |
| Pt/CeAl-PAC | 9.9 | 27.2 | 15.3 | 38.0 |
| Pt/CeAl-PAB | 8.6 | 21.6 | 14.5 | 38.2 |
| Pt/CeAl-HPU | 1.7 | 51.2 | 20.8 | 43.0 |
| Pt/CeAl-I | 4.0 | 18.7 | 15.3 | 38.3 |
| Pt/Al-I | — | 30.6 | — | 32.6 |
Fig.5 Relationships between T90 (a), Pt dispersion (b), Ce3+ ratio (c), Osur ratio (d), low-temperature peak temperature of H₂-TPR (e), and binding energy shift of Pt 4f (f) on different catalysts
| Sample | Ce3+/Al2O3/urea | CeO2 grain size/nm | Specific surface area/(m2/g) | Pt dispersion | LTRP of H2-TPR/℃ | CO T90/℃ |
|---|---|---|---|---|---|---|
| Pt/CeAl-HPU5 | 0.1/1.1/0.5 | 9.3 | 132 | 0.69 | 87 | 149 |
| Pt/CeAl-HPU15 | 0.1/1.1/1.5 | 11.4 | 137 | 0.61 | 97 | 154 |
| Pt/CeAl-HPU25 | 0.1/1.1/2.5 | 13.7 | 135 | 0.51 | 112 | 160 |
Table 3 Effect of urea content in the homogeneous precipitation process on the grain size of CeO2, specific surface area, Pt dispersion, LTRP in H2-TPR, and T90
| Sample | Ce3+/Al2O3/urea | CeO2 grain size/nm | Specific surface area/(m2/g) | Pt dispersion | LTRP of H2-TPR/℃ | CO T90/℃ |
|---|---|---|---|---|---|---|
| Pt/CeAl-HPU5 | 0.1/1.1/0.5 | 9.3 | 132 | 0.69 | 87 | 149 |
| Pt/CeAl-HPU15 | 0.1/1.1/1.5 | 11.4 | 137 | 0.61 | 97 | 154 |
| Pt/CeAl-HPU25 | 0.1/1.1/2.5 | 13.7 | 135 | 0.51 | 112 | 160 |
| [1] | 贺克斌. 打赢蓝天保卫战需要加快钢铁行业超低排放改造[N]. 中国环境报, 2019-05-06. |
| He K B. Winning the battle to defend the blue sky requires accelerating the ultra-low emission transformation of the steel industry[N]. China Environment News, 2019-05-06. | |
| [2] | 周昊, 成毅, 周明熙, 等. Pt涂层蜂窝金属和Ce改性Fe2O3催化CO的性能对比[J]. 工程科学学报, 2020, 42(1): 70-77. |
| Zhou H, Cheng Y, Zhou M X, et al. Analysis of CO catalytic oxidation by Pt-loading catalyst and Ce-doped Fe2O3 [J]. Chinese Journal of Engineering, 2020, 42(1): 70-77. | |
| [3] | Zhang T T, Xu J C, Sun Y, et al. Insight into the metal-support interaction of Pt and β-MnO2 in CO oxidation[J]. Molecules, 2023, 28(19): 6879. |
| [4] | Kim H, Kim J, Kwak J H. Origin of higher CO oxidation activity of Pt/rutile than that of Pt/anatase[J]. The Journal of Physical Chemistry C, 2023, 127(15): 7142-7150. |
| [5] | Liu J H, Ding T, Zhang H, et al. Engineering surface defects and metal-support interactions on Pt/TiO2(B) nanobelts to boost the catalytic oxidation of CO[J]. Catalysis Science & Technology, 2018, 8(19): 4934-4944. |
| [6] | Tomita A, Miki T, Tai Y. Effect of water treatment and Ce doping of Pt/Al2O3 catalysts on Pt sintering and propane oxidation[J]. Research on Chemical Intermediates, 2021, 47(7): 2935-2950. |
| [7] | Peng R S, Sun X B, Li S J, et al. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene[J]. Chemical Engineering Journal, 2016, 306: 1234-1246. |
| [8] | Pastor-Pérez L, Ramos-Fernández E V, Sepúlveda-Escribano A. Effect of the CeO2 synthesis method on the behaviour of Pt/CeO2 catalysis for the water-gas shift reaction[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21837-21846. |
| [9] | Kowalik P, Antoniak-Jurak K, Próchniak W, et al. The evaluation of synthesis route impact on structure, morphology and LT-WGS activity of Cu/ZnO/Al2O3 catalysts[J]. Catalysis Letters, 2017, 147(6): 1422-1433. |
| [10] | Huber F, Venvik H, Rønning M, et al. Preparation and characterization of nanocrystalline, high-surface area Cu-Ce-Zr mixed oxide catalysts from homogeneous co-precipitation[J]. Chemical Engineering Journal, 2008, 137(3): 686-702. |
| [11] | Talkhoncheh S K, Haghighi M, Minaei S, et al. Synthesis of CuO/ZnO/Al2O3/ZrO2/CeO2 nanocatalysts via homogeneous precipitation and combustion methods used in methanol steam reforming for fuel cell grade hydrogen production[J]. RSC Advances, 2016, 6(62): 57199-57209. |
| [12] | de A A Soler-Illia G J, Candal R J, Regazzoni A E, et al. Synthesis of mixed copper-zinc basic carbonates and Zn-doped tenorite by homogeneous alkalinization[J]. Chemistry of Materials, 1997, 9(1): 184-191. |
| [13] | Matijevic E. Preparation and properties of uniform size colloids[J]. Chemistry of Materials, 1993, 5(4): 412-426. |
| [14] | Lee J, Ryou Y, Chan X J, et al. How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: the origin of improved thermal stability of Pt/CeO2 compared to CeO2 [J]. The Journal of Physical Chemistry C, 2016, 120(45): 25870-25879. |
| [15] | An K, Alayoglu S, Musselwhite N, et al. Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles[J]. Journal of the American Chemical Society, 2013, 135(44): 16689-16696. |
| [16] | Nagai Y, Hirabayashi T, Dohmae K, et al. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction[J]. Journal of Catalysis, 2006, 242(1): 103-109. |
| [17] | Jeong M H, So J, Oh J, et al. Cerium-modified Pt/Al2O3 for NH3 synthesis by NO reduction with H2 [J]. Applied Surface Science, 2023, 638: 158067. |
| [18] | Fu X H, Liu Y X, Deng J G, et al. Intermetallic compound PtMn y -derived Pt-MnO x supported on mesoporous CeO2: highly efficient catalysts for the combustion of toluene[J]. Applied Catalysis A: General, 2020, 595: 117509. |
| [19] | Pérez-Pastenes H, Viveros-García T. A new insight over oxygen storage capacity, SMSI, and dispersion effects on VOC oxidation using Pt/Al2O3-CeO2 catalysts[J]. Topics in Catalysis, 2022, 65(13): 1530-1540. |
| [20] | Shi H H, Yang P X, Huang L, et al. Single-atom Pt-CeO2/Co3O4 catalyst with ultra-low Pt loading and high performance for toluene removal[J]. Journal of Colloid and Interface Science, 2023, 641: 972-980. |
| [21] | Li S S, Li X, Dan Y, et al. Designed synthesis of nanostructured Al2O3 stabilized homogeneous CeO2-ZrO2 solid solution as highly active support for Pd-only three-way catalyst[J]. Molecular Catalysis, 2019, 477: 110513. |
| [22] | Choi Y S, Kim J R, Hwang J H, et al. Effect of reduction temperature on the activity of Pt-Sn/Al2O3 catalysts for propane dehydrogenation[J]. Catalysis Today, 2023, 411: 113957. |
| [23] | Xu W F, Niu P Y, Guo H Q, et al. Hydrogenolysis of glycerol to 1, 3-propanediol over a Al2O3-supported platinum tungsten catalyst with two-dimensional open structure[J]. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133(1): 173-189. |
| [24] | Wang Y, Liu H H, Wang S Y, et al. Remarkable enhancement of dichloromethane oxidation over potassium-promoted Pt/Al2O3 catalysts[J]. Journal of Catalysis, 2014, 311: 314-324. |
| [25] | Yan S, Zhao M, Wang J L, et al. The preparation of Pd/CeO2-ZrO2-Al2O3 catalyst with superior structural stability: effect of zirconia incorporation method[J]. Journal of Materials Science, 2020, 55(23): 9993-10008. |
| [26] | Mao M Y, Lv H Q, Li Y Z, et al. Metal support interaction in Pt nanoparticles partially confined in the mesopores of microsized mesoporous CeO2 for highly efficient purification of volatile organic compounds[J]. ACS Catalysis, 2016, 6(1): 418-427. |
| [27] | Lyu Y, Xu J Y, Chen S, et al. Simultaneous catalytic oxidation of toluene and CO over Cu-V/Al-Ce catalysts: physicochemical properties-activity relationship and simultaneous oxidation mechanism[J]. Journal of Hazardous Materials, 2024, 466: 133507. |
| [28] | Wang C, Zhang C H, Hua W C, et al. Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts[J]. Chemical Engineering Journal, 2017, 315: 392-402. |
| [29] | Zhang L, Chu P Q, Wang Y H, et al. Promotion effect of strong CeO2/Co3O4 interfacial interaction for light alkane catalytic removal[J]. Applied Catalysis B: Environment and Energy, 2025, 369: 125150. |
| [30] | Su H, Gao W, Li L Q, et al. Oxygen vacancy-rich CeO2 quantum dots boost the activity and durability of Pt/C for methanol oxidation and oxygen reduction reactions[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(33): 12317-12325. |
| [31] | Wang C, Sasmaz E, Wen C, et al. Pd supported on SnO2-MnO x -CeO2 catalysts for low temperature CO oxidation[J]. Catalysis Today, 2015, 258: 481-486. |
| [32] | 顾欧昀, 廖永涛, 陈锐杰, 等. 铜锰复合氧化物催化剂上甲苯的催化燃烧[J]. 化工学报, 2016, 67(7): 2832-2840. |
| Gu O Y, Liao Y T, Chen R J, et al. Catalytic combustion of toluene over Cu-Mn mixed oxide catalyst[J]. CIESC Journal, 2016, 67(7): 2832-2840. | |
| [33] | Yang P, Yang S S, Shi Z N, et al. Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts[J]. Applied Catalysis B: Environmental, 2015, 162: 227-235. |
| [34] | 王健礼, 王康才, 曹红岩. Pt/γ-Al2O3/Ce x Zr1- x O2催化剂低温催化燃烧去除饮食油烟[J]. 物理化学学报, 2009, 25(4): 689-693. |
| Wang J L, Wang K C, Cao H Y, et al. Low temperature catalytic combustion of cooking fume over Pt/γ-Al2O3/Ce x Zr1- x O2 catalyst[J]. Acta Physico-Chimica Sinica, 2009, 25(4): 689-693. | |
| [35] | 杨黄根, 晏全, 韦庆敏, 等. 制备方法对铈锆铝复合氧化物还原热处理性能的影响[J]. 功能材料, 2019, 50(11): 11182-11189. |
| Yang H G, Yan Q, Wei Q M, et al. Effect of preparation method on the performance of CeO2-ZrO2-Al2O3 composite oxide after reductive treatment[J]. Journal of Functional Materials, 2019, 50(11): 11182-11189. | |
| [36] | Lan L, Huang X, Zhou W Q, et al. Development of a thermally stable Pt catalyst by redispersion between CeO2 and Al2O3 [J]. RSC Advances, 2021, 11(12): 7015-7024. |
| [37] | Lan L, Xiang J H, Huang L, et al. Synthesis of a highly stable Pt/CeO2/Al2O3 catalyst for gasoline engine emission control by adjusting Pt distribution[J]. The Canadian Journal of Chemical Engineering, 2022, 100(4): 827-837. |
| [38] | Gao Y X, Wang W D, Chang S J, et al. Morphology effect of CeO2 support in the preparation, metal-support interaction, and catalytic performance of Pt/CeO2 catalysts[J]. ChemCatChem, 2013, 5(12): 3610-3620. |
| [39] | Xi K, Wang Y, Jiang K, et al. Support interaction of Pt/CeO2 and Pt/SiC catalysts prepared by nano platinum colloid deposition for CO oxidation[J]. Journal of Rare Earths, 2020, 38(4): 376-383. |
| [40] | Liu H H, Wang Y, Jia A P, et al. Oxygen vacancy promoted CO oxidation over Pt/CeO2 catalysts: a reaction at Pt-CeO2 interface[J]. Applied Surface Science, 2014, 314: 725-734. |
| [41] | André R F, Rousse G, Sassoye C, et al. From Ce(OH)3 to nanoscaled CeO2: identification and crystal structure of a cerium oxyhydroxide intermediate phase[J]. Chemistry of Materials, 2023, 35(13): 5040-5048. |
| [42] | Ikuma Y, Oosawa H, Shimada E, et al. Effect of microwave radiation on the formation of Ce2O(CO3)2·H2O in aqueous solution[J]. Solid State Ionics, 2002, 151(1/2/3/4): 347-352. |
| [43] | 罗尧尧, 王天, 刘秉国, 等. 微反应器中Ce2O(CO3)2·H2O前体的合成及CeO2的制备研究[J]. 中国稀土学报, 2020, 38(4): 474-482. |
| Luo Y Y, Wang T, Liu B G, et al. Synthesis of cerium oxide carbonate hydrate precursor in microreactor and preparation of ceria[J]. Journal of the Chinese Society of Rare Earths, 2020, 38(4): 474-482. | |
| [44] | Shishido T, Yamamoto M, Li D L, et al. Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation[J]. Applied Catalysis A: General, 2006, 303(1): 62-71. |
| [45] | Nie M X, Xu Z Y, Luo L, et al. One-pot synthesis of ultrafine trimetallic PtPdCu alloy nanoparticles decorated on carbon nanotubes for bifunctional catalysis of ethanol oxidation and oxygen reduction[J]. Journal of Colloid and Interface Science, 2023, 643: 26-37. |
| [1] | Huihui QIAN, Wenjie WANG, Wenyao CHEN, Xinggui ZHOU, Jing ZHANG, Xuezhi DUAN. Synergistic metal-zeolite catalysis for conversion of polypropylene into aromatics [J]. CIESC Journal, 2025, 76(9): 4838-4849. |
| [2] | Xinyi CHAO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Controlled preparation and performance regulation of catalysts for one-step synthesis of methyl propionate from methanol and methyl acetate [J]. CIESC Journal, 2025, 76(8): 4030-4041. |
| [3] | Min YANG, Xinwei DUAN, Junhong WU, Jie MI, Jiancheng WANG, Mengmeng WU. COS catalyzed hydrolysis performance and deactivation mechanism of Sm2O3/γ-Al2O3 catalysts [J]. CIESC Journal, 2025, 76(8): 4061-4070. |
| [4] | Mei ZHOU, Haojie ZENG, Huoyan JIANG, Ting PU, Xingxing ZENG, Baoyu LIU. Meosporous MTW zeolites modified by secondary crystallization and their catalytic properties in alkylation reaction of benzene and cyclohexene [J]. CIESC Journal, 2025, 76(8): 4071-4080. |
| [5] | Shiying ZHAO, Zhishuai ZUO, Mengying HE, Hualiang AN, Xinqiang ZHAO, Yanji WANG. Preparation of Co-Pt/HAP catalyst and its catalytic performance for 1,2-propanediol amination [J]. CIESC Journal, 2025, 76(7): 3305-3315. |
| [6] | Xuyang LU, Qiang XU, Haopeng KANG, Jian SHI, Zeshui CAO, Liejin GUO. The CO reduction characteristics of magnetite oxygen carriers in chemical looping hydrogen production systems [J]. CIESC Journal, 2025, 76(7): 3286-3294. |
| [7] | Qiuying LI, Yihuai HUA, Hao CHENG, Hanwei ZHANG, Wenrui LIU, Haochuan BAI, Kai WANG, Limin QIU. Design of efficient hydrogen liquefaction process integrated with ORC system [J]. CIESC Journal, 2025, 76(7): 3651-3658. |
| [8] | Yinxiang TANG, Feng ZHU, Yingying FAN, Yuxin LONG, Yong DAI, Chunling DENG, Xiaofeng HUANG. Effect of preparation conditions on low-temperature co-removal of COS and CS2 from modified calcium carbide slag [J]. CIESC Journal, 2025, 76(7): 3639-3650. |
| [9] | Junyi WANG, Zhangxun XIA, Fenning JING, Suli WANG. Study on the relaxation time distribution of electrochemical impedance spectroscopy in high temperature polymer electrolyte membrane fuel cells based on reformed hydrogen fuels [J]. CIESC Journal, 2025, 76(7): 3509-3520. |
| [10] | Shenghua YANG, Yangjie SUN, Xiaojun XUE, Jie MI, Jiancheng WANG, Yu FENG. Research progress on gas pollutants removal by defective metal oxides [J]. CIESC Journal, 2025, 76(6): 2469-2482. |
| [11] | Fenhong SONG, Wenguang WANG, Liang GUO, Jing FAN. Modulation of TiO2 by C-element modified g-C3N4 and photocatalytic hydrogen production performance of composites [J]. CIESC Journal, 2025, 76(6): 2983-2994. |
| [12] | Haiyan JI, Jiayin LIU, Haijun WU, Jinglin HE, Ziheng JIN, Dianhang WEI, Xia JIANG. Research progress on the application of low-temperature plasma in biomass gasification to produce hydrogen [J]. CIESC Journal, 2025, 76(6): 2419-2433. |
| [13] | Lili LU, Chen LI, Liuyun CHEN, Xinling XIE, Xuan LUO, Tongming SU, Zuzeng QIN, Hongbing JI. Morphology regulation of BiOBr and study on its performance of photocatalytic CO2 reduction [J]. CIESC Journal, 2025, 76(6): 2687-2700. |
| [14] | Lei TANG, Zhenfei WANG, Congli LI, Jiahui YANG, Hao ZHENG, Qi SHI, Jinxiang DONG. CO working capacity and operating conditions of Co-MOF-74 and Mg-MOF-74 [J]. CIESC Journal, 2025, 76(5): 2279-2293. |
| [15] | Jing ZHANG, Yue YUAN, Yanmei LIU, Zhiwen WANG, Tao CHEN. Advance on the preparation of itaconic acid by biological method [J]. CIESC Journal, 2025, 76(3): 909-921. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||