[1] |
Xiong Zhuo(熊卓), Zhao Yongchun(赵永椿), Zhang Junying(张军营), Zheng Chuguang(郑楚光). Research progress in photocatalytic reduction of CO2 using titania-based catalysts [J]. Chemical Industry and Engineering Progress(化工进展), 2013, 32(5): 1043-1052, 1162.
|
[2] |
Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental applications of semiconductor photocatalysis [J]. Chemical Reviews, 1995, 95(1): 69-96.
|
[3] |
Navalón S, Dhakshinamoorthy A, Álvaro M, Garcia H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides [J]. ChemSusChem, 2013, 6 (4): 562-577.
|
[4] |
Liu B J, Torimoto T, Yoneyam H. Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents [J]. Journal of Photochclniatry and Photobiology A: Chemistry, 1998, 113 (1): 93-97.
|
[5] |
Fujiwara H, Hosokawa H, Murakoshi K, Wada Y, Yanagida S. Surface characteristics of ZnS nanocrystallites relating to their photocatalysis for CO2 reduction [J]. Langmuir, 1998, 14 (18): 5154-5159.
|
[6] |
An C, Wang J, Jiang W, Zhang M, Ming X, Wang S. Strongly visible-light responsive plasmonic shaped AgX-Ag (X=Cl, Br) nanoparticles for reduction of CO2 to methanol [J]. Nanoscale, 2012, 4 (18): 5646-5650.
|
[7] |
He Z Q, Wang D, Fang H Y, Chen J M, Song S. A highly efficient and stable Ag/AgIO3 particles for photocatalytic reduction of CO2 under visible light [J]. Nanoscale, 2014, 6 (18): 10540-10544.
|
[8] |
Yan Xuehua(严学华), Gao Qingxia(高庆侠), Yang Xiaofei(杨小飞), Li Yang(李扬), Tang Hua(唐华). Recent development on Ag3PO4- based photocatalytic materials [J]. Journal of the Chinese Ceramic Society(硅酸盐学报), 2013, 41(10): 1354-1365.
|
[9] |
Liu Y P, Fang L, Lu H D, Liu L J, Wang H, Hu C Z. Highly efficient and stable Ag/Ag3PO4 plasmonic photocatalyst in visible light [J]. Catalysis Communications, 2012, 17: 200-204.
|
[10] |
Bi Y P, Hu H Y, Ouyang S X, Jiao Z B, Lu G X, Ye J H. Selective growth of metallic Ag nanocrystals on Ag3PO4 submicro-cubes for photocatalytic applications [J]. Chemistry-A European Journal, 2012, 18 (45): 14272-14275.
|
[11] |
Zhang X M, Chen Y L, Liu R S, Tsai D P. Plasmonic photocatalysis [J]. Reports on Progress in Physics, 2013, 76: 046401.
|
[12] |
Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties [J]. Journal of the American Chemical Society, 2011, 133 (17): 6490-6492.
|
[13] |
Han X G, Jin M S, Xie S F, Kuang Q, Jiang Z Y, Jiang Y Q, Xie Z X, Zheng L S. Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties [J]. Angewandte Chemie-International Edition, 2009, 48 (48): 9180-9183.
|
[14] |
Wang W G, Cheng B, Yu J G, Liu G, Fang W H. Visible-light photocatalytic activity and deactivation mechanism of Ag3PO4 spherical particles [J]. Chemistry-An Asian Journal, 2012, 7 (8): 1902-1908.
|
[15] |
Jiao Z B, Zhang Y, Yu H C, Lu G X, Ye J H, Bi Y P. Concave trisoctahedral Ag3PO4 microcrystals with high-index facets and enhanced photocatalytic properties [J]. Chemical Communications, 2013, 49 (6): 636-638.
|
[16] |
Bi Y P, Hu H Y, Ouyang S X, Lu G X, Cao J Y, Ye J H. Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges [J]. Chemical Communications, 2012, 48 (31): 3748-3750.
|
[17] |
Wang J, Teng F, Chen M D, Xu J J, Song Y Q, Zhou X L. Facile synthesis of novel Ag3PO4 tetrapods and the {110} facets-dominated photocatalytic activity [J]. CrystEngComm, 2013, 15 (1): 39-42.
|
[18] |
Hu H Y, Jiao Z B, Yu H C, Lu G X, Ye J H, Bi Y P. Facile synthesis of tetrahedral Ag3PO4 submicro-crystals with enhanced photocatalytic properties [J]. Journal of Materials Chemistry A, 2013, 1 (7): 2387- 2390.
|
[19] |
Zheng B Z, Wang X, Liu C, Tan K, Xie Z X, Zheng L S. High-effciently visible light-responsive photocatalysts: Ag3PO4 tetrahedral microcrystals with exposed {111} facets of high surface energy [J]. Journal of Materials Chemistry A, 2013, 1 (40): 12635- 12640.
|
[20] |
Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors [J]. Angewandte Chemie-International Edition, 2013, 52(29): 7372-7408.
|
[21] |
He Z Q, Wen L N, Wang D, Xue Y J, Lu Q W, Wu C W, Chen J M, Song S. Photocatalytic reduction of CO2 in aqueous solution on surface-fluorinated anatase TiO2 nanosheets with exposed {001} facets [J]. Energy & Fuels, 2014, 28 (6): 3982-3993.
|
[22] |
Cullity B D. Elements of X-ray Diffraction [M]. Massachusetts: Addison-Wesley Publishing Company, 1978.
|
[23] |
Zhu M S, Chen P L, Liu M H. Visible-light-driven Ag/Ag3PO4-based plasmonic photocatalysts: enhanced photocatalytic performance by hybridization with graphene oxide [J]. Chinese Science Bulletin, 2013, 58 (1): 84-91.
|
[24] |
Wang J D, Liu J K, Luo C X, Lu Y, Yang X H. Silver phosphate crystal growth by screw dislocation driven of dynamic-template [J]. Crystal Growth & Design, 2013, 13 (11): 4837-4843.
|
[25] |
Hori Y, Wakebe H, Tsukamoto T, Koga O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media [J]. Electrochimica Acta, 1994, 39 (11/12): 1833-1839.
|
[26] |
Liu B J, Torimoto T, Matsumoto H, Yoneyama H. Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108 (2/3): 187-192.
|
[27] |
An X Q, Yu X L, Yu J C, Zhang G J. CdS nanorods/reduced graphene oxide nanocomposites for photocatalysis and electrochemical sensing [J]. Journal of Materials Chemistry A, 2013, 1 (16): 5158-5164.
|