[1] |
LAAKSONEN A, KULMALA M, O'DOWD C D, et al. The role of VOC oxidation products in continental new particle formation[J]. Atmos. Chem. Phy., 2008, 8(10): 2657-2665.
|
[2] |
ARANAA J, PENA A P, RODRIGUEZA J M. FTIR study of photocatalytic degradation of 2-propanol in gas phase with different TiO2 catalysts[J]. Appl. Catal. B: Environ., 2009, 89(1/2): 204-213.
|
[3] |
CHENG Z W, SUN P F, JIANG Y F, et al. Ozone-assisted UV254 nm photodegradation of gaseous ethylbenzene and chlorobenzene: effects of process parameters, degradation pathways, and kinetic analysis[J]. Chem. Eng. J., 2013, 228: 1003-1010.
|
[4] |
HINOJOSA-REYES M, RODRÍGUEZ-GONZALEZ V, ARRIAGA S. Enhancing ethylbenzene vapors degradation in a hybrid system based on photocatalytic oxidation UV/TiO2-In and a biofiltration process[J]. J. Hazard. Mater., 2012, 209/210: 365-371.
|
[5] |
孙彦富, 刘晖, 周康群, 等. 同步反硝化短程除硫菌的鉴定与生长条件[J]. 化工学报, 2010, 61(1): 192-199. SUN Y F, LIU H, ZHOU K Q, et al. Identification and growth condition of simultaneously denitrifying and short-cut sulfide removing bacteria[J]. CIESC Journal, 2010, 61(1): 192-199.
|
[6] |
PANG Y L, LIM S, ONG H C, et al. A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts[J]. Applied Catalysis A: General, 2014, 481: 127-142.
|
[7] |
YU L, YANG X F, HE J, et al. Synthesis of magnetically separable N, La-doped TiO2 with enhanced photocatalytic activity[J]. Separation and Purification Technology, 2015, 144: 107-113.
|
[8] |
YANG J, BAI H Z, TAN X C, et al. IR and XPS investigation of visible-light photocatalysis—nitrogen-carbon-doped TiO2 film[J]. Applied Surface Science, 2006, 253(4): 1988-1994.
|
[9] |
VAIANO V, SACCO O, IERVOLINO G, et al. Enhanced visible light photocatalytic activity by up-conversion phosphors modified N-doped TiO2[J]. Applied Catalysis B-Environmental, 2015, 176: 594-600.
|
[10] |
VAN DER MEULEN T, MATTSON A, OSTERLUND A, et al. A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase-rutile TiO2 nanoparticles: role of surface intermediates[J]. Journal of Catalysis, 2007, 251(1): 131-144.
|
[11] |
JIN M, NAGAOKA Y, NISHI K, et al. Adsorption properties and photocatalytic activity of TiO2 and La-doped TiO2[J]. Adsorption, 2008, 14(2/3): 257-263.
|
[12] |
CHEN H L, CHEN K F, LAI S W, et al. Photoelectrochemical oxidation of azo dye and generation of hydrogen via C-N co-doped TiO2 nanotube arrays[J]. Separation and Purification Technology, 2015, 146: 143-153.
|
[13] |
SAKTHIVEL S, KISCH H. Daylight photocatalysis by carbon-modified titanium dioxide[J]. Angewandte Chemie-Internvtional Edition, 2003, 42(40): 4908-4911.
|
[14] |
PENG F, CAI L F, YU H, et al. Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity[J]. Journal of Solid State Chemistry, 2008, 181(1): 130-136.
|
[15] |
MA Y F, ZHANG J L, TIAN B Z, et al. Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 386-393.
|
[16] |
ZHAO Z F, WANG Y Z, XU J. AgCl-loaded mesoporous anatase TiO2 with large specific surface area for enhancing photocatalysis[J]. Applied Surface Science, 2015, 351(1): 416-424.
|
[17] |
YU Y, YU J C, CHAN C Y, et al. Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye[J]. Applied Catalysis B: Environmental, 2005, 61(1): 1-11.
|
[18] |
LI X Y, ZOU X J, QU Z P, et al. Photocatalytic degradation of gaseous toluene over Ag-doping TiO2 nanotube powder prepared by anodization coupled with impregnation method[J]. Chemosphere, 2011, 83(5): 674-679.
|
[19] |
SAKTHIVEL S, KISCH H. Daylight photocatalysis by carbon modified titanium dioxide[J]. Angew. Chem. Int. Ed., 2003, 42(40): 4908-4911.
|
[20] |
ZHAO Z Z, XIE Y D, ZHANG B, et al. Advances on doped TiO2 visible light driven photocatalysts[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(1): 94-95.
|
[21] |
XIE Y, ZHAO X J. The effects of synthesis temperature on the structure and visible-light-induced catalytic activity of F-N-codoped and S-N-codoped titania[J]. Journal of Molecular Catalysis A: Chemical, 2008, 285: 142-149.
|
[22] |
HUANG D G, LIAO S J, ZHOU W B. Synthesis of samarium and nitrogen-co-doped TiO2 by modified hydrothermal method and its photocatalytic performance for the degradation of 4-chlorophenol[J]. Journal of Physical Chemistry Solids, 2009, 70(5): 853-859.
|
[23] |
DONG F, ZHAO W, WU Z. Characterization and photocatalytic activities of C, N and S co-doped TiO2 with 1D nanostructure prepared by the nanoconfinement effect[J]. Nanotechnology, 2008, 19 (36): 1-10.
|
[24] |
HU S Z, LI F Y, FAN Z P. The influence of preparation method, nitrogen source, and post-treatment on the photocatalytic activity and stability of N-doped TiO2 nanopowder[J]. Journal of Hazardous Materials, 2011, 196: 248-254.
|
[25] |
DONG W K, PHIL W S, GEO J K, et al. Characteristics of the HCHO oxidation reaction over Pt/TiO2 catalysts at room temperature: The effect of relative humidity on catalytic activity[J]. Applied Catalysis B: Environmental, 2014, 163: 436-443.
|
[26] |
AZALIM S, FRANCO M, BRAHMI R, et al. Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr-Ce-Mn catalysts[J]. J. Hazard. Mater., 2011, 188(1/2/3): 422-427.
|
[27] |
KOROLOGOS C A, PHILIPPOPOULOS C J, POULOPOULOS S G. The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase[J]. Atmospheric Environment, 2011, 45(39): 7089-7095.
|
[28] |
XIE Y B, LI X Z. Degradation of bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation[J]. J. Hazard. Mater., 2006, 138: 526-533.
|
[29] |
SABRI N A, NAWI M A, NAWAWI W I. Porous immobilized C coated N doped TiO2 containing in-situ generated polyenes for enhanced visible light photocatalytic activity[J]. Optical Materials, 2015, 48: 258-266.
|
[30] |
KONTOS A G, KATSANAKI A, MAGGOS T, et al. Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes[J]. Chem. Phys. Lett., 2010, 490(1/2/3): 58-62.
|