CIESC Journal ›› 2016, Vol. 67 ›› Issue (4): 1294-1302.DOI: 10.11949/j.issn.0438-1157.20151136
Previous Articles Next Articles
CHENG Zhuowei, GU Zhiqi, ZHU Runye, CHEN Jianmeng
Received:
2015-07-17
Revised:
2015-11-09
Online:
2016-04-05
Published:
2016-04-05
Supported by:
supported by the National Natural Science Foundation of China(21207115).
成卓韦, 顾执奇, 朱润晔, 陈建孟
通讯作者:
成卓韦
基金资助:
国家自然科学基金项目(21207115)。
CLC Number:
CHENG Zhuowei, GU Zhiqi, ZHU Runye, CHEN Jianmeng. Carbon and nitrogen co-doped TiO2 for photocatalytic removal of chlorobenzene: preparation, characterization and performance[J]. CIESC Journal, 2016, 67(4): 1294-1302.
成卓韦, 顾执奇, 朱润晔, 陈建孟. Ti基碳氮共掺杂TiO2的制备、结构表征及光催化氯苯废气性能[J]. 化工学报, 2016, 67(4): 1294-1302.
[1] | LAAKSONEN A, KULMALA M, O'DOWD C D, et al. The role of VOC oxidation products in continental new particle formation[J]. Atmos. Chem. Phy., 2008, 8(10): 2657-2665. |
[2] | ARANAA J, PENA A P, RODRIGUEZA J M. FTIR study of photocatalytic degradation of 2-propanol in gas phase with different TiO2 catalysts[J]. Appl. Catal. B: Environ., 2009, 89(1/2): 204-213. |
[3] | CHENG Z W, SUN P F, JIANG Y F, et al. Ozone-assisted UV254 nm photodegradation of gaseous ethylbenzene and chlorobenzene: effects of process parameters, degradation pathways, and kinetic analysis[J]. Chem. Eng. J., 2013, 228: 1003-1010. |
[4] | HINOJOSA-REYES M, RODRÍGUEZ-GONZALEZ V, ARRIAGA S. Enhancing ethylbenzene vapors degradation in a hybrid system based on photocatalytic oxidation UV/TiO2-In and a biofiltration process[J]. J. Hazard. Mater., 2012, 209/210: 365-371. |
[5] | 孙彦富, 刘晖, 周康群, 等. 同步反硝化短程除硫菌的鉴定与生长条件[J]. 化工学报, 2010, 61(1): 192-199. SUN Y F, LIU H, ZHOU K Q, et al. Identification and growth condition of simultaneously denitrifying and short-cut sulfide removing bacteria[J]. CIESC Journal, 2010, 61(1): 192-199. |
[6] | PANG Y L, LIM S, ONG H C, et al. A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts[J]. Applied Catalysis A: General, 2014, 481: 127-142. |
[7] | YU L, YANG X F, HE J, et al. Synthesis of magnetically separable N, La-doped TiO2 with enhanced photocatalytic activity[J]. Separation and Purification Technology, 2015, 144: 107-113. |
[8] | YANG J, BAI H Z, TAN X C, et al. IR and XPS investigation of visible-light photocatalysis—nitrogen-carbon-doped TiO2 film[J]. Applied Surface Science, 2006, 253(4): 1988-1994. |
[9] | VAIANO V, SACCO O, IERVOLINO G, et al. Enhanced visible light photocatalytic activity by up-conversion phosphors modified N-doped TiO2[J]. Applied Catalysis B-Environmental, 2015, 176: 594-600. |
[10] | VAN DER MEULEN T, MATTSON A, OSTERLUND A, et al. A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase-rutile TiO2 nanoparticles: role of surface intermediates[J]. Journal of Catalysis, 2007, 251(1): 131-144. |
[11] | JIN M, NAGAOKA Y, NISHI K, et al. Adsorption properties and photocatalytic activity of TiO2 and La-doped TiO2[J]. Adsorption, 2008, 14(2/3): 257-263. |
[12] | CHEN H L, CHEN K F, LAI S W, et al. Photoelectrochemical oxidation of azo dye and generation of hydrogen via C-N co-doped TiO2 nanotube arrays[J]. Separation and Purification Technology, 2015, 146: 143-153. |
[13] | SAKTHIVEL S, KISCH H. Daylight photocatalysis by carbon-modified titanium dioxide[J]. Angewandte Chemie-Internvtional Edition, 2003, 42(40): 4908-4911. |
[14] | PENG F, CAI L F, YU H, et al. Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity[J]. Journal of Solid State Chemistry, 2008, 181(1): 130-136. |
[15] | MA Y F, ZHANG J L, TIAN B Z, et al. Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 386-393. |
[16] | ZHAO Z F, WANG Y Z, XU J. AgCl-loaded mesoporous anatase TiO2 with large specific surface area for enhancing photocatalysis[J]. Applied Surface Science, 2015, 351(1): 416-424. |
[17] | YU Y, YU J C, CHAN C Y, et al. Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye[J]. Applied Catalysis B: Environmental, 2005, 61(1): 1-11. |
[18] | LI X Y, ZOU X J, QU Z P, et al. Photocatalytic degradation of gaseous toluene over Ag-doping TiO2 nanotube powder prepared by anodization coupled with impregnation method[J]. Chemosphere, 2011, 83(5): 674-679. |
[19] | SAKTHIVEL S, KISCH H. Daylight photocatalysis by carbon modified titanium dioxide[J]. Angew. Chem. Int. Ed., 2003, 42(40): 4908-4911. |
[20] | ZHAO Z Z, XIE Y D, ZHANG B, et al. Advances on doped TiO2 visible light driven photocatalysts[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(1): 94-95. |
[21] | XIE Y, ZHAO X J. The effects of synthesis temperature on the structure and visible-light-induced catalytic activity of F-N-codoped and S-N-codoped titania[J]. Journal of Molecular Catalysis A: Chemical, 2008, 285: 142-149. |
[22] | HUANG D G, LIAO S J, ZHOU W B. Synthesis of samarium and nitrogen-co-doped TiO2 by modified hydrothermal method and its photocatalytic performance for the degradation of 4-chlorophenol[J]. Journal of Physical Chemistry Solids, 2009, 70(5): 853-859. |
[23] | DONG F, ZHAO W, WU Z. Characterization and photocatalytic activities of C, N and S co-doped TiO2 with 1D nanostructure prepared by the nanoconfinement effect[J]. Nanotechnology, 2008, 19 (36): 1-10. |
[24] | HU S Z, LI F Y, FAN Z P. The influence of preparation method, nitrogen source, and post-treatment on the photocatalytic activity and stability of N-doped TiO2 nanopowder[J]. Journal of Hazardous Materials, 2011, 196: 248-254. |
[25] | DONG W K, PHIL W S, GEO J K, et al. Characteristics of the HCHO oxidation reaction over Pt/TiO2 catalysts at room temperature: The effect of relative humidity on catalytic activity[J]. Applied Catalysis B: Environmental, 2014, 163: 436-443. |
[26] | AZALIM S, FRANCO M, BRAHMI R, et al. Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr-Ce-Mn catalysts[J]. J. Hazard. Mater., 2011, 188(1/2/3): 422-427. |
[27] | KOROLOGOS C A, PHILIPPOPOULOS C J, POULOPOULOS S G. The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase[J]. Atmospheric Environment, 2011, 45(39): 7089-7095. |
[28] | XIE Y B, LI X Z. Degradation of bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation[J]. J. Hazard. Mater., 2006, 138: 526-533. |
[29] | SABRI N A, NAWI M A, NAWAWI W I. Porous immobilized C coated N doped TiO2 containing in-situ generated polyenes for enhanced visible light photocatalytic activity[J]. Optical Materials, 2015, 48: 258-266. |
[30] | KONTOS A G, KATSANAKI A, MAGGOS T, et al. Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes[J]. Chem. Phys. Lett., 2010, 490(1/2/3): 58-62. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[3] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[4] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[5] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[6] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[7] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[8] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[9] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[10] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[13] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[14] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[15] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 467
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 459
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||