[1] |
段竞芳, 史伟伟, 夏启斌, 等. 失活钒钛基SCR催化剂性能表征及其再生[J]. 功能材料, 2012, (16): 2191-2195. DUAN J F, SHI W W, XIA Q B, et al. Characterization and regeneration of deactivated commercial SCR[J]. Journal of Functional Materials, 2012, (16): 2191-2195.
|
[2] |
雷珊, 杨娟, 余剑, 等. 含钛高炉渣制备SCR烟气脱硝催化剂[J]. 化工学报, 2014, 65(4): 1251-1259. DOI: 10.3969/j.issn.0438-1157. 2014.04.014. LEI S, YANG J, YU J, et al. SCR denitration catalyst prepared from titanium-bearing blast furnace slag[J]. CIESC Journal, 2014, 65(4): 1252-1259. DOI: 10.3969/j.issn.0438-1157.2014.04.014.
|
[3] |
沈伯雄, 施建伟, 杨婷婷, 等. 选择性催化还原脱氮催化剂的再生及其应用评述[J]. 化工进展, 2008, 27(1): 64-67. SHEN B X, SHI J W, YANG T T, et al. Regeneration technologies of SCR catalysts and their applications[J]. Chemical Industry and Engineering Progress, 2008, 27(1): 64-67.
|
[4] |
张军, 电力用煤煤质特性指标浅析[J]. 煤质技术, 2007, (S1): 26-28. ZHANG J. Discussion on characteristic index of steam coal used in power generation[J]. Coal Quality Technology, 2007, (S1): 26-28.
|
[5] |
戴爱军, 杜彦学, 谢欣馨. 煤灰成分与灰熔融性关系研究进展[J]. 煤化工, 2009, (4): 16-19. DAI A J, DU Y X, XIE X X. Research progress on the relationship between coal ash components and ash fusion character[J]. Coal Chemical Industry, 2009, (4): 16-19.
|
[6] |
吴乐, 吴建群, 于敦喜, 等. O2/CO2燃烧对神华煤Ca和Fe交互反应影响[J]. 化工学报, 2015, 66(2): 753-758. DOI:10.11949/j.issn. 0438-1157.20141162. WU Le, WU J Q, YU D X, et al. Influence of O2/CO2 combustion on interaction of Ca and Fe in Shenhua coal[J]. CIESC Journal, 2015, 66(2): 754-758. DOI:10.11949/j.issn.0438-1157.20141162.
|
[7] |
吴凡, 段竞芳, 夏启斌, 等. SCR脱硝失活催化剂的清洗再生技术[J]. 热力发电, 2012, (5): 95-98. WU F, DUAN J F, XIA Q B, et al. Cleaning regeneration technology used for SCR catalysis flue gas denitrification[J]. Thermal Power Generation, 2012, (5): 95-98.
|
[8] |
GAO R, ZHANG D, LIU X, et al. Enhanced catalytic performance of V2O5-WO3/Fe2O3/TiO2 microspheres for selective catalytic reduction of NO by NH3[J]. Catal. Sci. Technol., 2013, 3(1): 191-199.
|
[9] |
CHEN L, LI J H, GE M F. Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3[J]. J. Phys. Chem. C, 2009, 113(50): 21177-21184.
|
[10] |
丁明玉, 赵纪萍, 李旗. 煤燃烧脱硫过程中含硫阴离子的离子色谱分析[J]. 分析试验室, 2002, 21(2): 21-23. DING M Y, ZHAO J P, LI Q. Ion chromatographic analysis of sulphur-containing anions in desulfurizing process of burning coal[J]. Chinese Journal of Analysis Laboratory, 2002, 21(2): 21-23.
|
[11] |
KOBAYASHI M, KUMA R, MASAKI S, et al. TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst: physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3[J]. Applied Catalysis B: Environmental, 2005, 60 (3/4): 173-179.
|
[12] |
YANG S J, LIU C X, CHANG H Z. Improvement of the activity of gamma-Fe2O3 for the selective catalytic reduction of NO with NH3 at high temperatures: NO reduction versus NH3 oxidization[J]. Industrial & Engineering Chemistry Research, 2013, 52(16): 5601-5610.
|
[13] |
BONINGARI T, KOIRALA R, SMIRNIOTIS P G. Low-temperature catalytic reduction of NO by NH3 over vanadia-based nanoparticles prepared by flame-assisted spray pyrolysis: influence of various supports[J]. Applied Catalysis B-Environmental, 2013, (140): 289-298.
|
[14] |
DUNN J P, KOPPULA P R, STENGER H G, et al. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts[J]. Applied Catalysis B-Environmental, 1998, (19): 103-117.
|
[15] |
LIU F, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. J. Phys. Chem. C, 2010, 114(40): 16929-16936.
|
[16] |
TRONCONI E, NOVA I, CIARDELLI C, et al. Redox features in the catalytic mechanism of the "standard" and "fast" NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods[J]. Journal of Catalysis, 2007, 245(1):1-10.
|
[17] |
DONG G J, BAI Y, ZHANG Y F, et al. Effect of the V4+(3+)/V5+ratio on the denitration activity for V2O5-WO3/TiO2catalysts[J]. New J. Chem., 2015, 39(5): 3588-3596.
|
[18] |
ZHANG L, SHI L Y, HUANG L, et al. Rational design of high-performance DeNOx catalysts based on MnxCo3-xO4 nanocages derived from metal-organic frameworks[J]. ACS Catalysis, 2014, 4(6): 1753-1763.
|
[19] |
TUREK W, PLIS A, COSTA P D, et al. Investigation of oxide catalysts activity in the NOx neutralisation with organic reductants[J]. Applied Surface Science, 2010, 256(17): 5572-5575.
|
[20] |
ZHAO W, ZHONG Q, ZHANG T J, et al. Characterization study on the promoting effect of F-doping V2O5/TiO2 SCR catalysts[J]. RSC Advances, 2012, 2(20): 7906-7914.
|