CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 7-21.DOI: 10.11949/j.issn.0438-1157.20152002
Previous Articles Next Articles
HU Hongchao1, CUI Yingde2
Received:
2016-01-03
Revised:
2016-05-18
Online:
2016-08-31
Published:
2016-08-31
胡洪超1, 崔英德2
通讯作者:
崔英德,samhuhongchao@gmail.com
CLC Number:
HU Hongchao, CUI Yingde. Progress of polymer solar cells and materials[J]. CIESC Journal, 2016, 67(S1): 7-21.
胡洪超, 崔英德. 聚合物太阳能电池及材料研究进展[J]. 化工学报, 2016, 67(S1): 7-21.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20152002
[1] | CHAPIN D, FULLER C, PEARSON G. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. Journal of Applied Physics, 1954, 25(5):676-677. |
[2] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 42)[J]. Progress in Photovoltaics:Research and Applications, 2013, 21(5):827-837. |
[3] | SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3):510-519. |
[4] | GREEN M A. Solar Cells:Operating Principles, Techno-logy, and System Applications[M]. Englewood Cliffs, NJ:Prentice-Hall, Inc., 1982:288. |
[5] | DENNLER G, SCHARBER M C, BRABEC C J. Polymer-fullerene bulk-heterojunction solar cells[J]. Advanced Materials, 2009, 21(13):1323-1338. |
[6] | FORREST S R. The path to ubiquitous and low-cost organic electronic appliances on plastic[J]. Nature, 2004, 428(6986):911-918. |
[7] | LI G, ZHU R, YANG Y. Polymer solar cells[J]. Nat. Photon., 2012, 6(3):153-161. |
[8] | MCGEHEE M D. Nanostructured organic-inorganic hybrid solar cells[J]. MRS Bulletin, 2009, 34(2):95-100. |
[9] | 黎立桂, 鲁广昊, 杨小牛, 等. 聚合物太阳能电池研究进展[J]. 科学通报, 2006, 51(21):145-158. LI L G, LU G H, YANG X N, et al. Progress in polymer solar cells[J]. Chin. Sci. Bull., 2006, 51(21):145-158. |
[10] | 密保秀, 高志强, 邓先宇, 等. 基于有机薄膜的太阳能电池材料与器件研究进展[J]. 中国科学:B辑, 2008, 38(11):957-975.MI B X, GAO Z Q, DENG X Y, et al. Progress of solar cell materials and devices based on organic thin film[J]. Sci. in Chin.:B, 2008, 38(11):957-975. |
[11] | 叶怀英, 李文, 李维实. 有机太阳能电池用聚合物给体材料的研究进展[J]. 有机化学, 2012, 32(2):266-283. YE H Y, LI W, LI W S, et al. Progress of polymer materials for organic solar cells[J]. Chin. J. Org. Chem., 2012, 32(2):266-283. |
[12] | LIANG Y, XU Z, XIA J, et al. For the bright future bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%[J]. Advanced Materials, 2010, 22(20):E135-E138. |
[13] | KREBS F C. Fabrication and processing of polymer solar cells:a review of printing and coating techniques[J]. Solar Energy Materials and Solar Cells, 2009, 93(4):394-412. |
[14] | KREBS F C. All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps[J]. Organic Electronics, 2009, 10(5):761-768. |
[15] | KREBS F C, ALSTRUP J, SPANGGAARD H, et al. Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate[J]. Solar Energy Materials and Solar Cells, 2004, 83(2/3):293-300. |
[16] | KREBS F C, GEVORGYAN S A, ALSTRUP J. A roll-to-roll process to flexible polymer solar cells:model studies, manufacture and operational stability studies[J]. J. Mater. Chem., 2009, 19(30):5442-5451. |
[17] | KREBS F C, J RGENSEN M, NORRMAN K, et al. A complete process for production of flexible large area polymer solar cells entirely using screen printing-first public demonstration[J]. Solar Energy Materials and Solar Cells, 2009, 93(4):422-441. |
[18] | KREBS F C, NIELSEN T D, FYENBO J, et al. Manufacture, integration and demonstration of polymer solar cells in a lamp for the "Lighting Africal" initiative[J]. Energy Environ. Sci., 2010, 3(5):512-525. |
[19] | KREBS F C, SPANGGAARD H. Significant improvement of polymer solar cell stability[J]. Chemistry of Materials, 2005, 17(21):5235-5237. |
[20] | HIRAMOTO M, FUJIWARA H, YOKOYAMA M. p-i-n like behavior in three-layered organic solar cells having a co-deposited interlayer of pigments[J]. Journal of Applied Physics, 1992, 72(8):3781-3787. |
[21] | SHAHEEN S E, BRABEC C J, SARICIFTCI N S, et al. 2.5% efficient organic plastic solar cells[J]. Applied Physics Letters, 2001, 78:841-843. |
[22] | CHIANG C, FINCHER C, PARK Y, et al. Electrical conductivity in doped polyacetylene[J]. Physical Review Letters, 1977, 39(17):1098-1101. |
[23] | HASTINGS J, POUGET J, SHIRANE G, et al. One-dimensional phonons and "phase-ordering" phase transition in a Hg-As-F compound[J]. Phys. Rev. Lett. (United States), 1977, 39:23. |
[24] | SU W, SCHRIEFFER J, HEEGER A. Solitons in polyacetylene[J]. Physical Review Letters, 1979, 42(25):1698-1701. |
[25] | WEINBERGER B, EHRENFREUND E, PRON A, et al. Electron spin resonance studies of magnetic soliton defects in polyacetylene[J]. The Journal of Chemical Physics, 1980, 72:4749-4755. |
[26] | GLENIS S, TOURILLON G, GARNIER F. Photoelectro-chemical properties of thin films of polythiophene and derivatives:doping level and structure effects[J]. Thin Solid Films, 1984, 122(1):9-17. |
[27] | GLENIS S, TOURILLON G, GARNIER F. Influence of the doping on the photovoltaic properties of thin films of poly-3-methylthiophene[J]. Thin Solid Films, 1986, 139(3):221-231. |
[28] | SARICIFTCI N S, SMILOWITZ L, HEEGER A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene[J]. Science, 1992, 258(5087):1474. |
[29] | YU G, GAO J, HUMMELEN J, et al. Polymer photo-voltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243):1789. |
[30] | HALLS J, WALSH C, GREENHAM N, et al. Efficient photodiodes from interpenetrating polymer networks[J]. Nature, 1995, 376(6540):498-500. |
[31] | PADINGER F, RITTBERGER R S, SARICIFTCI N S. Effects of postproduction treatment on plastic solar cells[J]. Advanced Functional Materials, 2003, 13(1):85-88. |
[32] | MA W, YANG C, GONG X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology[J]. Advanced Functional Materials, 2005, 15(10):1617-1622. |
[33] | KIM J Y, LEE K, COATES N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing[J]. Science, 2007, 317(5835):222. |
[34] | LI G, SHROTRIYA V, YAO Y, et al. Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly (3-hexylthiophene)[J]. Journal of Applied Physics, 2005, 98:043704. |
[35] | LI G, SHROTRIYA V, HUANG J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nature Materials, 2005, 4(11):864-868. |
[36] | LI G, YAO Y, YANG H, et al. Solvent annealing effect in polymer solar cells based on poly (3-hexylthiophene) and methanofullerenes[J]. Advanced Functional Materials, 2007, 17(10):1636-1644. |
[37] | SIEVERS D W, SHROTRIYA V, YANG Y. Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells[J]. Journal of Applied Physics, 2006, 100:114509. |
[38] | LI G, CHU C W, SHROTRIYA V, et al. Efficient inverted polymer solar cells[J]. Applied Physics Letters, 2006, 88:253503. |
[39] | YUAN Y, REECE T J, SHARMA P, et al. Efficiency enhancement in organic solar cells with ferroelectric polymers[J]. Nature Materials, 2011, 10(4):296-302. |
[40] | LIANG Y, FENG D, WU Y, et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties[J]. J. Am. Chem. Soc., 2009, 131(22):7792-7799. |
[41] | LIANG Y, WU Y, FENG D, et al. Development of new semiconducting polymers for high performance solar cells[J]. Journal of the American Chemical Society, 2008, 131(1):56-57. |
[42] | LIANG Y, YU L. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance[J]. Accounts of Chemical Research, 2010, 43(9):1227-1236. |
[43] | LIU Y, WAN X, WANG F, et al. Spin-coated small molecules for high performance solar cells[J]. Advanced Energy Materials, 2011, 1(5):771-775. |
[44] | CHEN H Y, HOU J, ZHANG S, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency[J]. Nature Photonics, 2009, 3(11):649-653. |
[45] | CHEN L M, HONG Z, LI G, et al. Recent progress in polymer solar cells:manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells[J]. Advanced Materials, 2009, 21(14/15):1434-1449. |
[46] | PRICE S C, STUART A C, YANG L, et al. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells[J]. Journal of the American Chemical Society, 2011, 133(12):4625-4631. |
[47] | ZHOU H, YANG L, STUART A C, et al. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency[J]. Angewandte Chemie, 2011, 123(13):3051-3054. |
[48] | SU M S, KUO C Y, YUAN M C, et al. Improving device efficiency of polymer/fullerene bulk heterojunction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additives[J]. Advanced Materials, 2011, 23(29):3315-3319. |
[49] | YANG J, ZHU R, HONG Z, et al. A robust inter-connecting layer for achieving high performance tandem polymer solar cells[J]. Advanced Materials, 2011, 23(30):3465-3470. |
[50] | SUN Y, TAKACS C J, COWAN S R, et al. Efficient, air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer[J]. Advanced Materials, 2011, 23(19):2226-2230. |
[51] | CHU T Y, LU J, BEAUPRÉ S, et al. Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%[J]. Journal of the American Chemical Society, 2011, 133(12):4250-4253. |
[52] | AMB C M, CHEN S, GRAHAM K R, et al. Dithienogermole as a fused electron donor in bulk heterojunction solar cells[J]. Journal of the American Chemical Society, 2011, 133(26):10062-10065. |
[53] | GREEN M A, EMERY K. Solar cell efficiency tables (version 1)[J]. Progress in Photovoltaics:Research and Applications, 1993, 1(3):225-227. |
[54] | GREEN M A, EMERY K, KING D L, et al. Solar cell efficiency tables (version 28)[J]. Progress in Photovoltaics:Research and Applications, 2006, 14(5):455-461. |
[55] | GREEN M A, EMERY K, KING D L, et al. Solar cell efficiency tables (version 29)[J]. Progress in Photovoltaics:Research and Applications, 2007, 15(1):35-40. |
[56] | GREEN M A, EMERY K, HISIKAWA Y, et al. Solar cell efficiency tables (version 30)[J]. Progress in Photovoltaics:Research and Applications, 2007, 15(5):425-430. |
[57] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 31)[J]. Progress in Photovoltaics:Research and Applications, 2008, 16(1):61-67. |
[58] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 32)[J]. Progress in Photovoltaics:Research and Applications, 2008, 16(5):435-440. |
[59] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 33)[J]. Progress in Photovoltaics:Research and Applications, 2009, 17(1):85-94. |
[60] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 34)[J]. Progress in Photovoltaics:Research and Applications, 2009, 17(5):320-326. |
[61] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 35)[J]. Progress in Photovoltaics:Research and Applications, 2010, 18(2):144-150. |
[62] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 36)[J]. Progress in Photovoltaics:Research and Applications, 2010, 18(5):346-352. |
[63] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 37)[J]. Progress in Photovoltaics:Research and Applications, 2011, 19(1):84-92. |
[64] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 38)[J]. Progress in Photovoltaics:Research and Applications, 2011, 19(5):565-572. |
[65] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 39)[J]. Progress in Photovoltaics:Research and Applications, 2012, 20(1):12-20. |
[66] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 40)[J]. Progress in Photovoltaics:Research and Applications, 2012, 20(5):606-614. |
[67] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 41)[J]. Progress in Photovoltaics:Research and Applications, 2013, 21(1):1-11. |
[68] | MORITA S, ZAKHIDOV A A, YOSHINO K. Doping effect of buckminsterfullerene in conducting polymer:change of absorption spectrum and quenching of luminescene[J]. Solid State Communications, 1992, 82(4):249-252. |
[69] | HUMMELEN J C, KNIGHT B W, LEPEQ F, et al. Preparation and characterization of fulleroid and methanofullerene derivatives[J]. The Journal of Organic Chemistry, 1995, 60(3):532-538. |
[70] | HUYNH W U, DITTMER J J, ALIVISATOS A P. Hybrid nanorod-polymer solar cells[J]. Science, 2002, 295(5564):2425. |
[71] | HOPPE H, SARICIFTCI N, MEISSNER D. Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells[J]. Molecular Crystals and Liquid Crystals, 2002, 385(1):113-119. |
[72] | YANG X, LOOS J, VEENSTRA S C, et al. Nanoscale morphology of high-performance polymer solar cells[J]. Nano Letters, 2005, 5(4):579-583. |
[73] | MONTANARI I, NOGUEIRA A F, NELSON J, et al. Transient optical studies of charge recombination dynamics in a polymer/fullerene composite at room temperature[J]. Applied Physics Letters, 2002, 81:3001. |
[74] | HUYNH W U, DITTMER J J, LIBBY W C, et al. Controlling the morphology of nanocrystal-polymer compo-sites for solar cells[J]. Advanced Functional Materials, 2003, 13(1):73-79. |
[75] | WIENK M M, KROON J M, VERHEES W J H, et al. Efficient methano |
[70] | fullerene/MDMO-PPV bulk heterojunction photovoltaic cells[J]. Angewandte Chemie, 2003, 115(29):3493-3497. |
[76] | XUE J, UCHIDA S, RAND B P, et al. 4.2% efficient organic photovoltaic cells with low series resistances[J]. Applied Physics Letters, 2004, 84:3013. |
[77] | KIM Y, COOK S, TULADHAR S M, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells[J]. Nature Materials, 2006, 5(3):197-203. |
[78] | LENES M, WETZELAER G J A H, KOOISTRA F B, et al. Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells[J]. Advanced Materials, 2008, 20(11):2116-2119. |
[79] | THOMPSON B C, FRÉCHET J M J. Polymer-fullerene composite solar cells[J]. Angewandte Chemie International Edition, 2008, 47(1):58-77. |
[80] | WANG E, WANG L, LAN L, et al. High-performance polymer heterojunction solar cells of a polysilafluorene derivative[J]. Applied Physics Letters, 2008, 92:033307. |
[81] | WIENK M M, TURBIEZ M, GILOT J, et al. Narrow bandgap diketo pyrrolo pyrrole polymer solar cells:the effect of processing on the performance[J]. Advanced Materials, 2008, 20(13):2556-2560. |
[82] | HOU J, CHEN H Y, ZHANG S, et al. Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells[J]. Journal of the American Chemical Society, 2009, 131(43):15586-15587. |
[83] | CHENG Y J, YANG S H, HSU C S. Synthesis of conjugated polymers for organic solar cell applications[J]. Chemical Reviews, 2009, 109(11):5868-5923。 |
[84] | HUO L, HOU J, ZHANG S, et al. A polybenzo[1,2-b:4,5-b']dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells[J]. Angewandte Chemie International Edition, 2010, 49(8):1500-1503. |
[85] | MIN NAM Y, HUH J, HO JO W. Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells[J]. Solar Energy Materials and Solar Cells, 2010, 94(6):1118-1124. |
[86] | SISTA S, PARK M H, HONG Z, et al. Highly efficient tandem polymer photovoltaic cells[J]. Advanced Materials, 2010, 22(3):380-383. |
[87] | LI Y. Molecular design of photovoltaic materials for polymer solar cells:toward suitable electronic energy levels and broad absorption[J]. Accounts of Chemical Research, 2012, 45(5):723-733. |
[88] | SARICIFTCI N, SMILOWITZ L, HEEGER A, et al. Semiconducting polymers (as donors) and buckminster-fullerene (as acceptor):photoinduced electron transfer and heterojunction devices[J]. Synthetic Metals, 1993, 59(3):333-352. |
[89] | LIU J, SHI Y, YANG Y. Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices[J]. Advanced Functional Materials, 2001, 11(6):420. |
[90] | FROHNE H, SHAHEEN S E, BRABEC C J, et al. Influence of the anodic work function on the performance of organic solar cells[J]. ChemPhysChem, 2002, 3(9):795-799. |
[91] | GADISA A, SVENSSON M, ANDERSSON M R, et al. Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative[J]. Applied Physics Letters, 2004, 84:1609. |
[92] | SCHARBER M C, MüHLBACHER D, KOPPE M, et al. Design rules for donors in bulk heterojunction solar cells towards 10% energy conversion efficiency[J]. Advanced Materials, 2006, 18(6):789-794. |
[93] | ZHU Z, MVHLBACHER D, MORANA M, et al. Design rules for efficient organic solar cells[M]//High-Efficient Low-Cost Photovoltaics. Berlin:Springer, 2009:195-222. |
[94] | ASTM. Tables for terrestrial direct normal solar spectral irradiance for Air Mass 1.5[M]//Annual Book of ASTM Standards. Philadelphia:ASTM, 1088. |
[95] | BLOM P W M, MIHAILETCHI V D, KOSTER L J A, et al. Device physics of polymer:fullerene bulk heterojunction solar cells[J]. Advanced Materials, 2007, 19(12):1551-1566. |
[96] | SCHILINSKY P, WALDAUF C, HAUCH J, et al. Simulation of light intensity dependent current characteristics of polymer solar cells[J]. Journal of Applied Physics, 2004, 95(5):2816-2819. |
[97] | ZERZA G, BRABEC C, CERULLO G, et al. Ultrafast charge transfer in conjugated polymer-fullerene composites[J]. Synthetic Metals, 2001, 119(1/2/3):637-638. |
[98] | MIHAILETCHI V D, VAN DUREN J K, BLOM P W, et al. Electron transport in a methanofullerene[J]. Advanced Functional Materials, 2003, 13(1):43-46. |
[99] | WIENK M M, KROON J M, VERHEES W J, et al. Efficient methano |
[70] | fullerene/MDMO-PPV bulk heter-ojunction photovoltaic cells[J]. Angewandte Chemie, 2003, 115(29):3493-3497. |
[100] | YAO Y, SHI C, LI G, et al. Effects of C70 derivative in low band gap polymer photovoltaic devices:spectral complementation and morphology optimization[J]. Applied Physics Letters, 2006, 89:153507. |
[101] | JENEKHE S A, OSAHENI J A. Excimers and exciplexes of conjugated polymers[J]. Science, 1994, 265(5173):765-768. |
[102] | JENEKHE S A, YI S. Efficient photovoltaic cells from semiconducting polymer heterojunctions[J]. Applied Physics Letters, 2000, 77(17):2635-2637. |
[103] | KARG S, RIESS W, DYAKONOV V, et al. Electrical and optical characterization of poly (phenylene-vinylene) light emitting diodes[J]. Synthetic Metals, 1993, 54(1):427-433. |
[104] | SUZUKI Y, HASHIMOTO K, TAJIMA K. Synthesis of regioregular poly(p-phenylenevinylene)s by horner reaction and their regioregularity characterization[J]. Macromolecules, 2007, 40(18):6521-6528. |
[105] | COLLADET K, NICOLAS M, GORIS L, et al. Low-band gap polymers for photovoltaic applications[J]. Thin Solid Films, 2004, 451:7-11. |
[106] | COLLADET K, FOURIER S, CLEIJ T J, et al. Low band gap donor-acceptor conjugated polymers toward organic solar cells applications[J]. Macromolecules, 2007, 40(1):65-72. |
[107] | HENCKENS A, COLLADET K, FOURIER S, et al. Synthesis of 3, 4-diphenyl-substituted poly(thienylene vinylene), low-band-gap polymers via the dithiocarbamate route[J]. Macromolecules, 2005, 38(1):19-26. |
[108] | VANDERZANDE D, LUTSEN L, HENCKENS A, et al. Method of preparing derivatives of polyarylene vinylene and method of preparing an electronic device including same[S]. Google Patents, 2010. |
[109] | THOMPSON B C, KIM Y G, REYNOLDS J R. Spectral broadening in MEH-PPV:PCBM-based photovoltaic devices via blending with a narrow band gap cyanovinylene-dioxythiophene polymer[J]. Macromolecules, 2005, 38(13):5359-5362. |
[110] | THOMPSON B C, KIM Y G, MCCARLEY T D, et al. Soluble narrow band gap and blue propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic and electrochromic applications[J]. Journal of the American Chemical Society, 2006, 128(39):12714-12725. |
[111] | GALAND E M, KIM Y G, MWAURA J K, et al. Optimization of narrow band-gap propylenedioxythiophene:cyanovinylene copolymers for optoelectronic applications[J]. Macromolecules, 2006, 39(26):9132-9142. |
[112] | HOU J, TAN Z A, YAN Y, et al. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi (thienylenevinylene) side chains[J]. Journal of the American Chemical Society, 2006, 128(14):4911-4916. |
[113] | HOU J, HUO L, HE C, et al. Synthesis and absorption spectra of poly(3-(phenylenevinyl) thiophene)s with conjugated side chains[J]. Macromolecules, 2006, 39(2):594-603. |
[114] | LI Y, ZOU Y. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility[J]. Advanced Materials, 2008, 20(15):2952-2958. |
[115] | HOU J, TAN Z A, HE Y, et al. Branched poly (thienylene vinylene)s with absorption spectra covering the whole visible region[J]. Macromolecules, 2006, 39(14):4657-4662. |
[116] | ZOU Y, WU W, SANG G, et al. Polythiophene derivative with phenothiazine-vinylene conjugated side chain:synthesis and its application in field-effect transistors[J]. Macromolecules, 2007, 40(20):7231-7237. |
[117] | LI Y, CAO Y, GAO J, et al. Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells[J]. Synthetic Metals, 1999, 99(3):243-248. |
[118] | HOU J, CHEN H Y, ZHANG S, et al. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2, 1, 3-benzothiadiazole[J]. Journal of the American Chemical Society, 2008, 130(48):16144-16145. |
[119] | SHI C, YAO Y, YANG Y, et al. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application[J]. Journal of the American Chemical Society, 2006, 128(27):8980-8986. |
[120] | SVENSSON M, ZHANG F, VEENSTRA S C, et al. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative[J]. Advanced Materials, 2003, 15(12):988-991. |
[121] | VELDMAN D, IPEK O, MESKERS S C, et al. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends[J]. Journal of the American Chemical Society, 2008, 130(24):7721-7735. |
[122] | YANG R, TIAN R, YAN J, et al. Deep-red electro-luminescent polymers:synthesis and characterization of new low-band-gap conjugated copolymers for light-emitting diodes and photovoltaic devices[J]. Macromolecules, 2005, 38(2):244-253. |
[123] | YANG J, JIANG C, ZHANG Y, et al. High-efficiency saturated red emitting polymers derived from fluorene and naphthoselenadiazole[J]. Macromolecules, 2004, 37(4):1211-1218. |
[124] | YANG R, TIAN R, HOU Q, et al. Synthesis and optical and electroluminescent properties of novel conjugated copolymers derived from fluorene and benzoselenadiazole[J]. Macromolecules, 2003, 36(20):7453-7460. |
[125] | LI X, ZENG W, ZHANG Y, et al. Synthesis and properties of novel poly (p-phenylenevinylene) copolymers for near-infrared emitting diodes[J]. European Polymer Journal, 2005, 41(12):2923-2933. |
[126] | ZHOU Q, HOU Q, ZHENG L, et al. Fluorene-based low band-gap copolymers for high performance photovoltaic devices[J]. Applied Physics Letters, 2004, 84(10):1653-1655. |
[127] | ZHANG F, PERZON E, WANG X, et al. Polymer solar cells based on a low-bandgap fluorene copolymer and a fullerene derivative with photocurrent extended to 850 nm[J]. Advanced Functional Materials, 2005, 15(5):745-750. |
[128] | WANG X, PERZON E, DELGADO J L, et al. Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative[J]. Applied Physics Letters, 2004, 85(21):5081-5083. |
[129] | WANG X, PERZON E, OSWALD F, et al. Enhanced photocurrent spectral response in low-bandgap polyfluorene and C70-derivative-based solar cells[J]. Advanced Functional Materials, 2005, 15(10):1665-1670. |
[130] | LECLERC N, MICHAUD A, SIROIS K, et al. Synthesis of 2,7-carbazolenevinylene-based copolymers and charac-terization of their photovoltaic properties[J]. Advanced Functional Materials, 2006, 16(13):1694-1704. |
[131] | LI J, DIERSCHKE F, WU J, et al. Poly (2,7-carbazole) and perylene tetracarboxydiimide:a promising donor/acceptor pair for polymer solar cells[J]. Journal of Materials Chemistry, 2006, 16(1):96-100. |
[132] | WAKIM S, BLOUIN N, GINGRAS E, et al. Poly (2,7-carbazole) derivatives as semiconductors for organic thin-film transistors[J]. Macromolecular Rapid Communi-cations, 2007, 28(17):1798-1803. |
[133] | DROLET N, MORIN J F, LECLERC N, et al. 2,7-Carbazolenevinylene-based oligomer thin-film transistors:high mobility through structural ordering[J]. Advanced Functional Materials, 2005, 15(10):1671-1682. |
[134] | BLOUIN N, MICHAUD A, LECLERC M. A low-bandgap poly (2,7-carbazole) derivative for use in high-performance solar cells[J]. Advanced Materials, 2007, 19(17):2295-2300. |
[135] | SOCI C, HWANG I W, MOSES D, et al. Photo-conductivity of a low-bandgap conjugated polymer[J]. Advanced Functional Materials, 2007, 17(4):632-636. |
[136] | MVHLBACHER D, SCHARBER M, MORANA M, et al. High photovoltaic performance of a low-bandgap polymer[J]. Advanced Materials, 2006, 18(21):2884-2889. |
[137] | ZHU Z, WALLER D, GAUDIANA R, et al. Panchro-matic conjugated polymers containing alternating donor/acceptor units for photovoltaic applications[J]. Macromolecules, 2007, 40(6):1981-1986. |
[138] | CHU T Y, LU J, BEAUPR S, et al. Bulk heterojunction solar cells using thieno[3,4-c] pyrrole-4, 6-dione and dithieno[3,2-b:2', 3'-d] silole copolymer with a power conversion efficiency of 7.3%[J]. Journal of the American Chemical Society, 2011, 133(12):4250-4253. |
[139] | http://www.sigmaaldrich.com/united-states.html. |
[140] | HU H, CUI Y. Synthesis and conductive properties of a novel azobenzene-based conjugated polymer[J]. Synthetic Metals, 2015, 205:106-111. |
[1] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[4] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[5] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[6] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[7] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[8] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[9] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[10] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[11] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[12] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[13] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[14] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[15] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||