CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 7-21.doi: 10.11949/j.issn.0438-1157.20152002

Previous Articles     Next Articles

Progress of polymer solar cells and materials

HU Hongchao1, CUI Yingde2   

  1. 1 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China;
    2 Guangzhou Vocational College of Science and Technology, Guangzhou 510550, Guangdong, China
  • Received:2016-01-03 Revised:2016-05-18 Online:2016-08-31 Published:2016-08-31

Abstract:

Energy and polution is the big problems of human, the best solution is that develop solar energy adequately. Polymer solar cells have been researched for over 20 years, the efficiency have overcome 10%。review the history and theory of polymer solar cells, the structure and materials are important factors for polymer solar cells, especially donor. From PPVs to PCDTBT, TTBDT, BDTTPD, the efficiency of solar cells increase quickly as the new donor material was used in polymer solar cells. It's important for putting into using that researching new donor material as the theory have be studied in a deep-going way and the technology mature.

Key words: polymer, solar cells, material

CLC Number: 

  • O625.52
[1] CHAPIN D, FULLER C, PEARSON G. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. Journal of Applied Physics, 1954, 25(5):676-677.
[2] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 42)[J]. Progress in Photovoltaics:Research and Applications, 2013, 21(5):827-837.
[3] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3):510-519.
[4] GREEN M A. Solar Cells:Operating Principles, Techno-logy, and System Applications[M]. Englewood Cliffs, NJ:Prentice-Hall, Inc., 1982:288.
[5] DENNLER G, SCHARBER M C, BRABEC C J. Polymer-fullerene bulk-heterojunction solar cells[J]. Advanced Materials, 2009, 21(13):1323-1338.
[6] FORREST S R. The path to ubiquitous and low-cost organic electronic appliances on plastic[J]. Nature, 2004, 428(6986):911-918.
[7] LI G, ZHU R, YANG Y. Polymer solar cells[J]. Nat. Photon., 2012, 6(3):153-161.
[8] MCGEHEE M D. Nanostructured organic-inorganic hybrid solar cells[J]. MRS Bulletin, 2009, 34(2):95-100.
[9] 黎立桂, 鲁广昊, 杨小牛, 等. 聚合物太阳能电池研究进展[J]. 科学通报, 2006, 51(21):145-158. LI L G, LU G H, YANG X N, et al. Progress in polymer solar cells[J]. Chin. Sci. Bull., 2006, 51(21):145-158.
[10] 密保秀, 高志强, 邓先宇, 等. 基于有机薄膜的太阳能电池材料与器件研究进展[J]. 中国科学:B辑, 2008, 38(11):957-975.MI B X, GAO Z Q, DENG X Y, et al. Progress of solar cell materials and devices based on organic thin film[J]. Sci. in Chin.:B, 2008, 38(11):957-975.
[11] 叶怀英, 李文, 李维实. 有机太阳能电池用聚合物给体材料的研究进展[J]. 有机化学, 2012, 32(2):266-283. YE H Y, LI W, LI W S, et al. Progress of polymer materials for organic solar cells[J]. Chin. J. Org. Chem., 2012, 32(2):266-283.
[12] LIANG Y, XU Z, XIA J, et al. For the bright future bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%[J]. Advanced Materials, 2010, 22(20):E135-E138.
[13] KREBS F C. Fabrication and processing of polymer solar cells:a review of printing and coating techniques[J]. Solar Energy Materials and Solar Cells, 2009, 93(4):394-412.
[14] KREBS F C. All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps[J]. Organic Electronics, 2009, 10(5):761-768.
[15] KREBS F C, ALSTRUP J, SPANGGAARD H, et al. Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate[J]. Solar Energy Materials and Solar Cells, 2004, 83(2/3):293-300.
[16] KREBS F C, GEVORGYAN S A, ALSTRUP J. A roll-to-roll process to flexible polymer solar cells:model studies, manufacture and operational stability studies[J]. J. Mater. Chem., 2009, 19(30):5442-5451.
[17] KREBS F C, J RGENSEN M, NORRMAN K, et al. A complete process for production of flexible large area polymer solar cells entirely using screen printing-first public demonstration[J]. Solar Energy Materials and Solar Cells, 2009, 93(4):422-441.
[18] KREBS F C, NIELSEN T D, FYENBO J, et al. Manufacture, integration and demonstration of polymer solar cells in a lamp for the "Lighting Africal" initiative[J]. Energy Environ. Sci., 2010, 3(5):512-525.
[19] KREBS F C, SPANGGAARD H. Significant improvement of polymer solar cell stability[J]. Chemistry of Materials, 2005, 17(21):5235-5237.
[20] HIRAMOTO M, FUJIWARA H, YOKOYAMA M. p-i-n like behavior in three-layered organic solar cells having a co-deposited interlayer of pigments[J]. Journal of Applied Physics, 1992, 72(8):3781-3787.
[21] SHAHEEN S E, BRABEC C J, SARICIFTCI N S, et al. 2.5% efficient organic plastic solar cells[J]. Applied Physics Letters, 2001, 78:841-843.
[22] CHIANG C, FINCHER C, PARK Y, et al. Electrical conductivity in doped polyacetylene[J]. Physical Review Letters, 1977, 39(17):1098-1101.
[23] HASTINGS J, POUGET J, SHIRANE G, et al. One-dimensional phonons and "phase-ordering" phase transition in a Hg-As-F compound[J]. Phys. Rev. Lett. (United States), 1977, 39:23.
[24] SU W, SCHRIEFFER J, HEEGER A. Solitons in polyacetylene[J]. Physical Review Letters, 1979, 42(25):1698-1701.
[25] WEINBERGER B, EHRENFREUND E, PRON A, et al. Electron spin resonance studies of magnetic soliton defects in polyacetylene[J]. The Journal of Chemical Physics, 1980, 72:4749-4755.
[26] GLENIS S, TOURILLON G, GARNIER F. Photoelectro-chemical properties of thin films of polythiophene and derivatives:doping level and structure effects[J]. Thin Solid Films, 1984, 122(1):9-17.
[27] GLENIS S, TOURILLON G, GARNIER F. Influence of the doping on the photovoltaic properties of thin films of poly-3-methylthiophene[J]. Thin Solid Films, 1986, 139(3):221-231.
[28] SARICIFTCI N S, SMILOWITZ L, HEEGER A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene[J]. Science, 1992, 258(5087):1474.
[29] YU G, GAO J, HUMMELEN J, et al. Polymer photo-voltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243):1789.
[30] HALLS J, WALSH C, GREENHAM N, et al. Efficient photodiodes from interpenetrating polymer networks[J]. Nature, 1995, 376(6540):498-500.
[31] PADINGER F, RITTBERGER R S, SARICIFTCI N S. Effects of postproduction treatment on plastic solar cells[J]. Advanced Functional Materials, 2003, 13(1):85-88.
[32] MA W, YANG C, GONG X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology[J]. Advanced Functional Materials, 2005, 15(10):1617-1622.
[33] KIM J Y, LEE K, COATES N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing[J]. Science, 2007, 317(5835):222.
[34] LI G, SHROTRIYA V, YAO Y, et al. Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly (3-hexylthiophene)[J]. Journal of Applied Physics, 2005, 98:043704.
[35] LI G, SHROTRIYA V, HUANG J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nature Materials, 2005, 4(11):864-868.
[36] LI G, YAO Y, YANG H, et al. Solvent annealing effect in polymer solar cells based on poly (3-hexylthiophene) and methanofullerenes[J]. Advanced Functional Materials, 2007, 17(10):1636-1644.
[37] SIEVERS D W, SHROTRIYA V, YANG Y. Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells[J]. Journal of Applied Physics, 2006, 100:114509.
[38] LI G, CHU C W, SHROTRIYA V, et al. Efficient inverted polymer solar cells[J]. Applied Physics Letters, 2006, 88:253503.
[39] YUAN Y, REECE T J, SHARMA P, et al. Efficiency enhancement in organic solar cells with ferroelectric polymers[J]. Nature Materials, 2011, 10(4):296-302.
[40] LIANG Y, FENG D, WU Y, et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties[J]. J. Am. Chem. Soc., 2009, 131(22):7792-7799.
[41] LIANG Y, WU Y, FENG D, et al. Development of new semiconducting polymers for high performance solar cells[J]. Journal of the American Chemical Society, 2008, 131(1):56-57.
[42] LIANG Y, YU L. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance[J]. Accounts of Chemical Research, 2010, 43(9):1227-1236.
[43] LIU Y, WAN X, WANG F, et al. Spin-coated small molecules for high performance solar cells[J]. Advanced Energy Materials, 2011, 1(5):771-775.
[44] CHEN H Y, HOU J, ZHANG S, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency[J]. Nature Photonics, 2009, 3(11):649-653.
[45] CHEN L M, HONG Z, LI G, et al. Recent progress in polymer solar cells:manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells[J]. Advanced Materials, 2009, 21(14/15):1434-1449.
[46] PRICE S C, STUART A C, YANG L, et al. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells[J]. Journal of the American Chemical Society, 2011, 133(12):4625-4631.
[47] ZHOU H, YANG L, STUART A C, et al. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency[J]. Angewandte Chemie, 2011, 123(13):3051-3054.
[48] SU M S, KUO C Y, YUAN M C, et al. Improving device efficiency of polymer/fullerene bulk heterojunction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additives[J]. Advanced Materials, 2011, 23(29):3315-3319.
[49] YANG J, ZHU R, HONG Z, et al. A robust inter-connecting layer for achieving high performance tandem polymer solar cells[J]. Advanced Materials, 2011, 23(30):3465-3470.
[50] SUN Y, TAKACS C J, COWAN S R, et al. Efficient, air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer[J]. Advanced Materials, 2011, 23(19):2226-2230.
[51] CHU T Y, LU J, BEAUPRÉ S, et al. Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%[J]. Journal of the American Chemical Society, 2011, 133(12):4250-4253.
[52] AMB C M, CHEN S, GRAHAM K R, et al. Dithienogermole as a fused electron donor in bulk heterojunction solar cells[J]. Journal of the American Chemical Society, 2011, 133(26):10062-10065.
[53] GREEN M A, EMERY K. Solar cell efficiency tables (version 1)[J]. Progress in Photovoltaics:Research and Applications, 1993, 1(3):225-227.
[54] GREEN M A, EMERY K, KING D L, et al. Solar cell efficiency tables (version 28)[J]. Progress in Photovoltaics:Research and Applications, 2006, 14(5):455-461.
[55] GREEN M A, EMERY K, KING D L, et al. Solar cell efficiency tables (version 29)[J]. Progress in Photovoltaics:Research and Applications, 2007, 15(1):35-40.
[56] GREEN M A, EMERY K, HISIKAWA Y, et al. Solar cell efficiency tables (version 30)[J]. Progress in Photovoltaics:Research and Applications, 2007, 15(5):425-430.
[57] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 31)[J]. Progress in Photovoltaics:Research and Applications, 2008, 16(1):61-67.
[58] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 32)[J]. Progress in Photovoltaics:Research and Applications, 2008, 16(5):435-440.
[59] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 33)[J]. Progress in Photovoltaics:Research and Applications, 2009, 17(1):85-94.
[60] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 34)[J]. Progress in Photovoltaics:Research and Applications, 2009, 17(5):320-326.
[61] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 35)[J]. Progress in Photovoltaics:Research and Applications, 2010, 18(2):144-150.
[62] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 36)[J]. Progress in Photovoltaics:Research and Applications, 2010, 18(5):346-352.
[63] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 37)[J]. Progress in Photovoltaics:Research and Applications, 2011, 19(1):84-92.
[64] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 38)[J]. Progress in Photovoltaics:Research and Applications, 2011, 19(5):565-572.
[65] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 39)[J]. Progress in Photovoltaics:Research and Applications, 2012, 20(1):12-20.
[66] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 40)[J]. Progress in Photovoltaics:Research and Applications, 2012, 20(5):606-614.
[67] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 41)[J]. Progress in Photovoltaics:Research and Applications, 2013, 21(1):1-11.
[68] MORITA S, ZAKHIDOV A A, YOSHINO K. Doping effect of buckminsterfullerene in conducting polymer:change of absorption spectrum and quenching of luminescene[J]. Solid State Communications, 1992, 82(4):249-252.
[69] HUMMELEN J C, KNIGHT B W, LEPEQ F, et al. Preparation and characterization of fulleroid and methanofullerene derivatives[J]. The Journal of Organic Chemistry, 1995, 60(3):532-538.
[70] HUYNH W U, DITTMER J J, ALIVISATOS A P. Hybrid nanorod-polymer solar cells[J]. Science, 2002, 295(5564):2425.
[71] HOPPE H, SARICIFTCI N, MEISSNER D. Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells[J]. Molecular Crystals and Liquid Crystals, 2002, 385(1):113-119.
[72] YANG X, LOOS J, VEENSTRA S C, et al. Nanoscale morphology of high-performance polymer solar cells[J]. Nano Letters, 2005, 5(4):579-583.
[73] MONTANARI I, NOGUEIRA A F, NELSON J, et al. Transient optical studies of charge recombination dynamics in a polymer/fullerene composite at room temperature[J]. Applied Physics Letters, 2002, 81:3001.
[74] HUYNH W U, DITTMER J J, LIBBY W C, et al. Controlling the morphology of nanocrystal-polymer compo-sites for solar cells[J]. Advanced Functional Materials, 2003, 13(1):73-79.
[75] WIENK M M, KROON J M, VERHEES W J H, et al. Efficient methano
[70] fullerene/MDMO-PPV bulk heterojunction photovoltaic cells[J]. Angewandte Chemie, 2003, 115(29):3493-3497.
[76] XUE J, UCHIDA S, RAND B P, et al. 4.2% efficient organic photovoltaic cells with low series resistances[J]. Applied Physics Letters, 2004, 84:3013.
[77] KIM Y, COOK S, TULADHAR S M, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells[J]. Nature Materials, 2006, 5(3):197-203.
[78] LENES M, WETZELAER G J A H, KOOISTRA F B, et al. Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells[J]. Advanced Materials, 2008, 20(11):2116-2119.
[79] THOMPSON B C, FRÉCHET J M J. Polymer-fullerene composite solar cells[J]. Angewandte Chemie International Edition, 2008, 47(1):58-77.
[80] WANG E, WANG L, LAN L, et al. High-performance polymer heterojunction solar cells of a polysilafluorene derivative[J]. Applied Physics Letters, 2008, 92:033307.
[81] WIENK M M, TURBIEZ M, GILOT J, et al. Narrow bandgap diketo pyrrolo pyrrole polymer solar cells:the effect of processing on the performance[J]. Advanced Materials, 2008, 20(13):2556-2560.
[82] HOU J, CHEN H Y, ZHANG S, et al. Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells[J]. Journal of the American Chemical Society, 2009, 131(43):15586-15587.
[83] CHENG Y J, YANG S H, HSU C S. Synthesis of conjugated polymers for organic solar cell applications[J]. Chemical Reviews, 2009, 109(11):5868-5923。
[84] HUO L, HOU J, ZHANG S, et al. A polybenzo[1,2-b:4,5-b']dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells[J]. Angewandte Chemie International Edition, 2010, 49(8):1500-1503.
[85] MIN NAM Y, HUH J, HO JO W. Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells[J]. Solar Energy Materials and Solar Cells, 2010, 94(6):1118-1124.
[86] SISTA S, PARK M H, HONG Z, et al. Highly efficient tandem polymer photovoltaic cells[J]. Advanced Materials, 2010, 22(3):380-383.
[87] LI Y. Molecular design of photovoltaic materials for polymer solar cells:toward suitable electronic energy levels and broad absorption[J]. Accounts of Chemical Research, 2012, 45(5):723-733.
[88] SARICIFTCI N, SMILOWITZ L, HEEGER A, et al. Semiconducting polymers (as donors) and buckminster-fullerene (as acceptor):photoinduced electron transfer and heterojunction devices[J]. Synthetic Metals, 1993, 59(3):333-352.
[89] LIU J, SHI Y, YANG Y. Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices[J]. Advanced Functional Materials, 2001, 11(6):420.
[90] FROHNE H, SHAHEEN S E, BRABEC C J, et al. Influence of the anodic work function on the performance of organic solar cells[J]. ChemPhysChem, 2002, 3(9):795-799.
[91] GADISA A, SVENSSON M, ANDERSSON M R, et al. Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative[J]. Applied Physics Letters, 2004, 84:1609.
[92] SCHARBER M C, MüHLBACHER D, KOPPE M, et al. Design rules for donors in bulk heterojunction solar cells towards 10% energy conversion efficiency[J]. Advanced Materials, 2006, 18(6):789-794.
[93] ZHU Z, MVHLBACHER D, MORANA M, et al. Design rules for efficient organic solar cells[M]//High-Efficient Low-Cost Photovoltaics. Berlin:Springer, 2009:195-222.
[94] ASTM. Tables for terrestrial direct normal solar spectral irradiance for Air Mass 1.5[M]//Annual Book of ASTM Standards. Philadelphia:ASTM, 1088.
[95] BLOM P W M, MIHAILETCHI V D, KOSTER L J A, et al. Device physics of polymer:fullerene bulk heterojunction solar cells[J]. Advanced Materials, 2007, 19(12):1551-1566.
[96] SCHILINSKY P, WALDAUF C, HAUCH J, et al. Simulation of light intensity dependent current characteristics of polymer solar cells[J]. Journal of Applied Physics, 2004, 95(5):2816-2819.
[97] ZERZA G, BRABEC C, CERULLO G, et al. Ultrafast charge transfer in conjugated polymer-fullerene composites[J]. Synthetic Metals, 2001, 119(1/2/3):637-638.
[98] MIHAILETCHI V D, VAN DUREN J K, BLOM P W, et al. Electron transport in a methanofullerene[J]. Advanced Functional Materials, 2003, 13(1):43-46.
[99] WIENK M M, KROON J M, VERHEES W J, et al. Efficient methano
[70] fullerene/MDMO-PPV bulk heter-ojunction photovoltaic cells[J]. Angewandte Chemie, 2003, 115(29):3493-3497.
[100] YAO Y, SHI C, LI G, et al. Effects of C70 derivative in low band gap polymer photovoltaic devices:spectral complementation and morphology optimization[J]. Applied Physics Letters, 2006, 89:153507.
[101] JENEKHE S A, OSAHENI J A. Excimers and exciplexes of conjugated polymers[J]. Science, 1994, 265(5173):765-768.
[102] JENEKHE S A, YI S. Efficient photovoltaic cells from semiconducting polymer heterojunctions[J]. Applied Physics Letters, 2000, 77(17):2635-2637.
[103] KARG S, RIESS W, DYAKONOV V, et al. Electrical and optical characterization of poly (phenylene-vinylene) light emitting diodes[J]. Synthetic Metals, 1993, 54(1):427-433.
[104] SUZUKI Y, HASHIMOTO K, TAJIMA K. Synthesis of regioregular poly(p-phenylenevinylene)s by horner reaction and their regioregularity characterization[J]. Macromolecules, 2007, 40(18):6521-6528.
[105] COLLADET K, NICOLAS M, GORIS L, et al. Low-band gap polymers for photovoltaic applications[J]. Thin Solid Films, 2004, 451:7-11.
[106] COLLADET K, FOURIER S, CLEIJ T J, et al. Low band gap donor-acceptor conjugated polymers toward organic solar cells applications[J]. Macromolecules, 2007, 40(1):65-72.
[107] HENCKENS A, COLLADET K, FOURIER S, et al. Synthesis of 3, 4-diphenyl-substituted poly(thienylene vinylene), low-band-gap polymers via the dithiocarbamate route[J]. Macromolecules, 2005, 38(1):19-26.
[108] VANDERZANDE D, LUTSEN L, HENCKENS A, et al. Method of preparing derivatives of polyarylene vinylene and method of preparing an electronic device including same[S]. Google Patents, 2010.
[109] THOMPSON B C, KIM Y G, REYNOLDS J R. Spectral broadening in MEH-PPV:PCBM-based photovoltaic devices via blending with a narrow band gap cyanovinylene-dioxythiophene polymer[J]. Macromolecules, 2005, 38(13):5359-5362.
[110] THOMPSON B C, KIM Y G, MCCARLEY T D, et al. Soluble narrow band gap and blue propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic and electrochromic applications[J]. Journal of the American Chemical Society, 2006, 128(39):12714-12725.
[111] GALAND E M, KIM Y G, MWAURA J K, et al. Optimization of narrow band-gap propylenedioxythiophene:cyanovinylene copolymers for optoelectronic applications[J]. Macromolecules, 2006, 39(26):9132-9142.
[112] HOU J, TAN Z A, YAN Y, et al. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi (thienylenevinylene) side chains[J]. Journal of the American Chemical Society, 2006, 128(14):4911-4916.
[113] HOU J, HUO L, HE C, et al. Synthesis and absorption spectra of poly(3-(phenylenevinyl) thiophene)s with conjugated side chains[J]. Macromolecules, 2006, 39(2):594-603.
[114] LI Y, ZOU Y. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility[J]. Advanced Materials, 2008, 20(15):2952-2958.
[115] HOU J, TAN Z A, HE Y, et al. Branched poly (thienylene vinylene)s with absorption spectra covering the whole visible region[J]. Macromolecules, 2006, 39(14):4657-4662.
[116] ZOU Y, WU W, SANG G, et al. Polythiophene derivative with phenothiazine-vinylene conjugated side chain:synthesis and its application in field-effect transistors[J]. Macromolecules, 2007, 40(20):7231-7237.
[117] LI Y, CAO Y, GAO J, et al. Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells[J]. Synthetic Metals, 1999, 99(3):243-248.
[118] HOU J, CHEN H Y, ZHANG S, et al. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2, 1, 3-benzothiadiazole[J]. Journal of the American Chemical Society, 2008, 130(48):16144-16145.
[119] SHI C, YAO Y, YANG Y, et al. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application[J]. Journal of the American Chemical Society, 2006, 128(27):8980-8986.
[120] SVENSSON M, ZHANG F, VEENSTRA S C, et al. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative[J]. Advanced Materials, 2003, 15(12):988-991.
[121] VELDMAN D, IPEK O, MESKERS S C, et al. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends[J]. Journal of the American Chemical Society, 2008, 130(24):7721-7735.
[122] YANG R, TIAN R, YAN J, et al. Deep-red electro-luminescent polymers:synthesis and characterization of new low-band-gap conjugated copolymers for light-emitting diodes and photovoltaic devices[J]. Macromolecules, 2005, 38(2):244-253.
[123] YANG J, JIANG C, ZHANG Y, et al. High-efficiency saturated red emitting polymers derived from fluorene and naphthoselenadiazole[J]. Macromolecules, 2004, 37(4):1211-1218.
[124] YANG R, TIAN R, HOU Q, et al. Synthesis and optical and electroluminescent properties of novel conjugated copolymers derived from fluorene and benzoselenadiazole[J]. Macromolecules, 2003, 36(20):7453-7460.
[125] LI X, ZENG W, ZHANG Y, et al. Synthesis and properties of novel poly (p-phenylenevinylene) copolymers for near-infrared emitting diodes[J]. European Polymer Journal, 2005, 41(12):2923-2933.
[126] ZHOU Q, HOU Q, ZHENG L, et al. Fluorene-based low band-gap copolymers for high performance photovoltaic devices[J]. Applied Physics Letters, 2004, 84(10):1653-1655.
[127] ZHANG F, PERZON E, WANG X, et al. Polymer solar cells based on a low-bandgap fluorene copolymer and a fullerene derivative with photocurrent extended to 850 nm[J]. Advanced Functional Materials, 2005, 15(5):745-750.
[128] WANG X, PERZON E, DELGADO J L, et al. Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative[J]. Applied Physics Letters, 2004, 85(21):5081-5083.
[129] WANG X, PERZON E, OSWALD F, et al. Enhanced photocurrent spectral response in low-bandgap polyfluorene and C70-derivative-based solar cells[J]. Advanced Functional Materials, 2005, 15(10):1665-1670.
[130] LECLERC N, MICHAUD A, SIROIS K, et al. Synthesis of 2,7-carbazolenevinylene-based copolymers and charac-terization of their photovoltaic properties[J]. Advanced Functional Materials, 2006, 16(13):1694-1704.
[131] LI J, DIERSCHKE F, WU J, et al. Poly (2,7-carbazole) and perylene tetracarboxydiimide:a promising donor/acceptor pair for polymer solar cells[J]. Journal of Materials Chemistry, 2006, 16(1):96-100.
[132] WAKIM S, BLOUIN N, GINGRAS E, et al. Poly (2,7-carbazole) derivatives as semiconductors for organic thin-film transistors[J]. Macromolecular Rapid Communi-cations, 2007, 28(17):1798-1803.
[133] DROLET N, MORIN J F, LECLERC N, et al. 2,7-Carbazolenevinylene-based oligomer thin-film transistors:high mobility through structural ordering[J]. Advanced Functional Materials, 2005, 15(10):1671-1682.
[134] BLOUIN N, MICHAUD A, LECLERC M. A low-bandgap poly (2,7-carbazole) derivative for use in high-performance solar cells[J]. Advanced Materials, 2007, 19(17):2295-2300.
[135] SOCI C, HWANG I W, MOSES D, et al. Photo-conductivity of a low-bandgap conjugated polymer[J]. Advanced Functional Materials, 2007, 17(4):632-636.
[136] MVHLBACHER D, SCHARBER M, MORANA M, et al. High photovoltaic performance of a low-bandgap polymer[J]. Advanced Materials, 2006, 18(21):2884-2889.
[137] ZHU Z, WALLER D, GAUDIANA R, et al. Panchro-matic conjugated polymers containing alternating donor/acceptor units for photovoltaic applications[J]. Macromolecules, 2007, 40(6):1981-1986.
[138] CHU T Y, LU J, BEAUPR S, et al. Bulk heterojunction solar cells using thieno[3,4-c] pyrrole-4, 6-dione and dithieno[3,2-b:2', 3'-d] silole copolymer with a power conversion efficiency of 7.3%[J]. Journal of the American Chemical Society, 2011, 133(12):4250-4253.
[139] http://www.sigmaaldrich.com/united-states.html.
[140] HU H, CUI Y. Synthesis and conductive properties of a novel azobenzene-based conjugated polymer[J]. Synthetic Metals, 2015, 205:106-111.
[1] Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156.
[2] Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238.
[3] Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874.
[4] Chi YIN, Zhengguo ZHANG, Ziye LING, Xiaoming FANG. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation [J]. CIESC Journal, 2023, 74(4): 1795-1804.
[5] Zhen LONG, Jinhang WANG, Yong HE, Deqing LIANG. Characteristics study on hydrates formation from gas mixture under ionic liquid together with kinetic hydrate inhibitors [J]. CIESC Journal, 2023, 74(4): 1703-1711.
[6] Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826.
[7] Yangguang LYU, Peipei ZUO, Zhengjin YANG, Tongwen XU. Triazine framework polymer membranes for methanol/n-hexane separation via organic solvent nanofiltration [J]. CIESC Journal, 2023, 74(4): 1598-1606.
[8] Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734.
[9] Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378.
[10] Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351.
[11] Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389.
[12] Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369.
[13] Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994.
[14] Wan XU, Zhenbin CHEN, Huijuan ZHANG, Fangfang NIU, Ting HUO, Xingsheng LIU. Study on synthesis, adsorption and desorption performance of linear temperature-sensitive segment polymer regulated intelligent ReO4- ion-imprinted polymer [J]. CIESC Journal, 2023, 74(2): 941-952.
[15] Shaojie ZHENG, Jianbin WANG, Jijiang HU, Bo-Geng LI, Wenbo YUAN, Zong WANG, Zhen YAO. Regulation of structure and mechanical properties of poly(propylene-butene) alloys by monomer composition switching [J]. CIESC Journal, 2023, 74(2): 904-915.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!