[1] |
兖少锋, 陈瑾, 王丽乔, 等. 雷竹落叶生物炭对微囊藻毒素的吸附性能[J]. 环境化学, 2014, 33(4):617-623. YAN S F, CHEN J, WANG L Q, et al. Adsorption of microcystin-LR on the leaves-phyllostachys praecox-derived biochar[J]. Environmental Chem., 2014, 33(4):617-623.
|
[2] |
WANG S Y, TANG Y K, CHEN C, et al. Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead (Ⅱ) removal[J]. Bioresource Technol., 2015, 186:360-364.
|
[3] |
LI Y T, PI Y T, LU L M, et al. Hierarchical porous active carbon from fallen leaves by synergy of K2CO3 and their supercapacitor performance[J]. J. Power Sources, 2015, 299:519-528.
|
[4] |
付乔明, 赵春贵, 杨素萍. 3种紫细菌天然光合色素敏化DSSC光电转化性能[J]. 化工学报, 2014, 65(8):3202-3211. FU Q M, ZHAO C G, YANG S P. Photoelectric conversion performance of natural photosynthetic pigments from three typical members of purple bacteria for dye-sensitized solar cells[J]. CIESC Journal, 2014, 65(8):3202-3211.
|
[5] |
MASATO M M, YOHEI T, NIKLAS D J H, et al. Low-temperature annealing of mesoscopic TiO2 films by interfacial microwave heating applied to efficiency improvement of dye-sensitized solar cells[J]. Sol. Energ. Mat. Sol. C., 2016, 147:198-202.
|
[6] |
XU H F, ZHU G. Facile one-step synthesis of uniformly carbon-mixed tin sulfide hexagonal nanodisks as low-cost counter electrode material for dye-sensitized solar cells[J]. Mater. Lett., 2016, 171:174-177.
|
[7] |
NOH Y Y, YOO K, KIN J Y, et al. Iridium catalyst based counter electrodes for dye-sensitized solar cells[J]. Curr. Appl. Phys., 2013, 13:1620-1624.
|
[8] |
WU W T, YANG S H, HSU C M, et al. Study of graphene nanoflake as counter electrode in dye sensitized solar cells[J]. Diam. Relat. Mater., 2016, 65:91-95.
|
[9] |
LI G R, WANG F, SONG J, et al. TiN-conductive carbon black composite as counter electrode for dye-sensitized solar cells[J]. Electrochim. Acta, 2012, 65(1):216-220.
|
[10] |
罗玉峰, 刘茜茜, 徐顺建, 等. 染料敏化太阳电池石墨/聚苯胺复合对电极的低温制备和性能[J]. 化工新型材料, 2015, 43(3):83-86. LUO Y F, LIU X X, XU S J, et al. Low-temperature preparation and performance of graphite/PANI composite counter electrodes for DSCs[J]. New Chem. Mater., 2015, 43(3):83-86.
|
[11] |
IMOTO K, TAKAHASHI K, YAMAGUCHI T, et al. High-performance carbon counter electrode for dye-sensitized solar cells[J]. Sol. Energ. Mat. Sol. C., 2003, 79(4):459-469.
|
[12] |
HWANG S, MOON J, LEE S, et al. Carbon nanotubes as counter electrode for dye-sensitised solar cells[J]. Electron. Lett., 2007, 43(25):1455-1456.
|
[13] |
徐顺建, 罗玉峰, 李水根, 等. 低温制备介孔碳对电极构建的染料敏化太阳电池优化研究[J]. 无机材料学报, 2012, 27(1):83-88. XU S J, LUO Y F, LI S G, et al. Optimization of dye-sensitized solar cells consisting of low-temperature fabricated mesoporous carbon counter electrode[J]. J. Inorg. Mater., 2012, 27(1):83-88.
|
[14] |
CHAU T T T, JOO H J, SURESH T, et al. Graphene coated alumina-modified polypyrrole composite films as an efficient Pt-free counter electrode for dye-sensitized solar cells[J]. Electrochim. Acta, 2016, 205:170-177.
|
[15] |
JIANG Q W, WANG G R, LI F, et al. Highly ordered mesoporous carbon arrays from natural wood materials as counter electrode for dye-sensitized solar cells[J]. Electrochem. Commun., 2010, 12:924-927.
|
[16] |
尹艳山, 王泽忠, 田红, 等. 木质纤维类生活垃圾热解过程矿物质和碳结构的演化规律[J]. 燃料化学学报, 2015, 43(2):160-166. YIN Y S, WANG Z Z, TIAN H, et al. Evolution of mineral matter and carbonaceous structure during lignocellulosic municipal solid waste pyrolysis[J]. J. Fuel Chem. Tech., 2015, 43(2):160-166.
|
[17] |
ADEL R A U, ADEL A, METHTHIKA V, et al. Biochar production from date palm waste:charring temperature changes in composition and surface chemistry[J]. J. Anal. Appl. Pyrol., 2015, 115:392-400.
|
[18] |
FRIAS M, SAVASTANO H, VILLAR E, et al. Characterization and properties of blended cement matrices containing activated bamboo leaf wastes[J]. Cement Concrete Comp., 2012, 34(9):1019-1023.
|
[19] |
XU S J, LUO Y F, ZHONG W. Investigation of catalytic activity of glassy carbon with controlled crystallinity for counter electrode in dye-sensitized solar cells[J]. Sol. Energy, 2011, 85(11):2826-2832.
|
[20] |
FAN S Q, FANG B, KIM J H, et al. Ordered multimodal porous carbon as highly efficient counter electrodes in dye-sensitized and quantum-dot solar cells[J]. Langmuir, 2010, 26(16):13644-13649.
|
[21] |
TAI S Y, CHANG C F, LIU W C, et al. Optically transparent counter electrode for dye-sensitized solar cells based on cobalt sulfide nanosheet arrays[J]. Electrochim. Acta, 2013, 107:66-70.
|
[22] |
HE J J, DUFFYC N W, PRINGLE J M, et al. Conducting polymer and titanium carbide-based nanocomposites as efficient counter electrodes for dye-sensitized solar cells[J]. Electrochim. Acta, 2013, 105:275-281.
|
[23] |
FENG J, LIU G, MA T, et al. The performance of dye-sensitized solar cells using different carbon materials as counter electrodes[J]. New Carbon Mater., 2012, 27(4):278-282.
|