[1] |
LLOYD D, VAINIKKA T, KONTTURI K. The development of an all copper hybrid redox flow battery using deep eutectic solvents[J]. Electrochimica Acta, 2013, 100:18-23.
|
[2] |
HIRAO M, SUGIMOTO H, OHNO H. Preparation of novel room-temperature molten salts by neutralization of amines[J]. Journal of the Electrochemical Society, 2000, 147(11):4168-4172.
|
[3] |
SCORDILIS-KELLEY C, FULLER J, CARLIN R T, et al. Alkali metal reduction potentials measured in chloroaluminate ambient-temperature molten salts[J]. Journal of the Electrochemical Society, 1992, 139(3):694-699.
|
[4] |
ZHANG D, LIU Q, SHI X, et al. Tetrabutylammonium hexafluorophosphate and 1-ethyl-3-methyl imidazolium hexafluorophosphate ionic liquids as supporting electrolytes for non-aqueous vanadium redox flow batteries[J]. Journal of Power Sources, 2012, 203:201-205.
|
[5] |
LLOYD D, VAINIKKA T, RONKAINEN M, et al. Characterisation and application of the Fe(Ⅱ)/Fe(Ⅲ) redox reaction in an ionic liquid analogue[J]. Electrochimica Acta, 2013, 109:843-851.
|
[6] |
CHAKRABARTI M H, MJALLI F S, ALNASHEF I M, et al. Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries[J]. Renewable and Sustainable Energy Reviews, 2014, 30:254-270.
|
[7] |
ABBOTT A P, CAPPER G, SWAIN B G, et al. Electropolishing of stainless steel in an ionic liquid[J]. Transactions of the IMF, 2013, 83(1):51-53.
|
[8] |
LI W, ZHANG Z, HAN B, et al. Switching the basicity of ionic liquids by CO2[J]. Green Chemistry, 2008, 10(11):1142-1145.
|
[9] |
LLOYD D, VAINIKKA T, MURTOMÄKI L, et al. The kinetics of the Cu2+/Cu+ redox couple in deep eutectic solvents[J]. Electrochimica Acta, 2011, 56(14):4942-4948.
|
[10] |
SANZ L, LLOYD D, MAGDALENA E, et al. Description and performance of a novel aqueous all-copper redox flow battery[J]. Journal of Power Sources, 2014, 268:121-128.
|
[11] |
XU Q, ZHAO T S, WEI L, et al. Electrochemical characteristics and transport properties of Fe(Ⅱ)/Fe(Ⅲ) redox couple in a non-aqueous reline deep eutectic solvent[J]. Electrochimica Acta, 2015, 154:462-467.
|
[12] |
ABBOTT A P, BARRON J C, RYDER K S, et al. Eutectic-based ionic liquids with metal-containing anions and cations[J]. Chemistry-A European Journal, 2007, 13(22):6495-6501.
|
[13] |
BAHADORI L, HASHIM M A, MANAN N S A, et al. Investigation of ammonium-and phosphonium-based deep eutectic solvents as electrolytes for a non-aqueous all-vanadium redox cell[J]. Journal of the Electrochemical Society, 2016, 163(5):A632-A638.
|
[14] |
ABBOTT A P, CAPPER G, DAVIES D L, et al. Solubility of metal oxides in deep eutectic solvents based on choline chloride[J]. Journal of Chemical & Engineering Data, 2006, 51(4):1280-1282.
|
[15] |
ZHANG C, ZHAO T S, XU Q, et al. Effects of operating temperature on the performance of vanadium redox flow batteries[J]. Applied Energy, 2015, 155:349-353.
|
[16] |
SUM E, SKYLLAS-KAZACOS M. A study of the V(Ⅱ)/V(Ⅲ) redox couple for redox flow cell applications[J]. Journal of Power sources, 1985, 15(2/3):179-190.
|
[17] |
BARD A J, FAULKNER L R, LEDDY J, et al. Electrochemical Methods:Fundamentals and Applications[M]. New York:Wiley, 1980.
|
[18] |
CASAS J M, CRISÓSTOMO G, CIFUENTES L. Speciation of the Fe(Ⅱ)-Fe(Ⅲ)-H2SO4-H2O system at 25 and 50℃[J]. Hydrometallurgy, 2005, 80(4):254-264.
|
[19] |
XIAO S, YU L, WU L, et al. Broad temperature adaptability of vanadium redox flow battery(1):Electrolyte research[J]. Electrochimica Acta, 2016, 187:525-534.
|
[20] |
BOCKRIS J O, REDDY A K N. Modern Electrochemistry:Vol. 1[M]. New York, 1970:Chapter 6.
|
[21] |
ABBOTT A P. Application of hole theory to the viscosity of ionic and molecular liquids[J]. Chem. Phys. Chem., 2004, 5(8):1242-1246.
|
[22] |
TANG A, BAO J, SKYLLAS-KAZACOS M. Studies on pressure losses and flow rate optimization in vanadium redox flow battery[J]. Journal of Power Sources, 2014, 248:154-162.
|