[1] |
张秋民, 关裙, 何德民. 几种典型的油页岩干馏技术[J]. 吉林大学学报(地球科学版), 2006, 36(6):1019-1026. ZHANG Q M, GUAN J, HE D M. Typical technologies for oil shale retorting[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(6):1019-1026.
|
[2] |
高健. 世界各国油页岩干馏技术简介[J]. 煤炭加工与综合应用, 2003, (2):44-46. GAO J. Brief introduction of oil shale retorting technology in the world[J]. Coal Processing & Comprehensive Utilization, 2003, (2):44-46.
|
[3] |
马国君, 戴和武. 神木煤回转炉热解实验研究[J]. 煤炭科学技术, 1994, 22(11):37-39. MA G J, DAI H W. Experimental study on pyrolysis of Shenmu coal with rotary furnace[J]. Coal Science & Technology, 1994, 22(11):37-39.
|
[4] |
张勇奇. 低变质煤热解技术分析[J]. 化学工业, 2012, 30(3):23-25. ZHANG Y Q. Analysis on metamorphism of coal pyrolysis technolog[J]. Chemical Industry, 2012, 30(3):23-25.
|
[5] |
韩峰, 张衍国, 蒙爱红, 等. 煤的低温干馏工艺及开发[J]. 煤炭转化, 2014, 37(3):90-96. HAN F, ZHANG Y G, MENG A H, et al. Review and development of coal low temperature pyrolytic technologies[J]. Coal Conversion, 2014, 37(3):90-96.
|
[6] |
GRAFF R A, BRANDES S D. Modification of coal by subcritical steam-pyrolysis and extration yields[J]. Energy Fuels, 1987, 1(1):84-88.
|
[7] |
RASHID KHAN M, CHEN W, SUUBERG E. Influence of steam pretreatment on coal composition and devolatilization[J]. Energy Fuels, 1989, 3(2):223-230.
|
[8] |
ZENG C, FAVAS G, WU H W, et al. Effects of pretreatment in steam on the pyrolysis behavior of Loy Yang brown coal[J]. Energy Fuels, 2006, 20(1):281-286.
|
[9] |
ZENG C, CLAYTON S, WU H W, et al. Effects of dewatering on the pyrolysis and gasification reactivity of Victorian brown coal[J]. Energy Fuels, 2007, 21(2):399-404.
|
[10] |
ZENG C, WU H, HAYASHI J J, et al. Effects of thermal pretreatment in helium on the pyrolysis behaviour of Loy Yang brown coal[J]. Fuel, 2005, 84(12/13):1586-1592.
|
[11] |
MIURA K, MAE K. A new coal flash pyrolysis method utilizing effective radical transfer from solvent to coal[J]. Energy Fuels, 1991, 5(2):340-346.
|
[12] |
HAYASHI J, MATSUO Y, KUSAKABE K, et al. Effect of light heat treatment on pyrolysis reactivity of brown coal[J]. Energy & Fuels, 1995, 9(2):284-289
|
[13] |
董鹏伟, 岳君容, 高士秋, 等. 热预处理影响褐煤热解行为研究[J]. 燃料化学学报, 2012, 40(8):897-905. DONG P W, YUE J R, GAO S Q, et al. Influence of thermal pretreatment on pyrolysis of lignite[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8):897-905.
|
[14] |
孙佰仲, 王擎, 李少华, 等. 桦甸油页岩及半焦孔结构的特性分析[J]. 动力工程, 2008, 28(1):163-167. SUN B Z, WANG Q, LI S H, et al. Analysis of specific area and porous structure of oil shale and semi coke[J]. Journal of Power Engineering, 2008, 28(1):163-167.
|
[15] |
赵世永, 吴沛沛, 李鑫, 等. 神府煤中低温热解前后表面官能团和孔隙变化规律的研究[J]. 煤炭工程, 2015, 47(12):114-117. ZHAO S Y, WU P P, LI X, et al. Study on variation law of surface functional groups and pore of Shenfu coal after low-middle temperature pyrolysis[J]. Coal Engineering, 2015, 47(12):114-117.
|
[16] |
王毅, 赵阳升, 冯增朝. 长焰煤热解过程中孔隙结构演化特征研究[J]. 岩石力学与工程学报, 2010, 29(9):1859-1866. WANG Y, ZHAO Y S, FENG Z C. Study of evolution characteristics of pore structure during flame coal pyrolysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9):1859-1866.
|
[17] |
吴诗勇, 顾菁, 李莉, 等. 高温下快速和慢速热解神府煤焦的理化性质[J]. 煤炭学报, 2006, 31(4):492-496. WU S Y, GU Q, LI L, et al. Physical and chemical properties of slow and rapid heating chars at elevated temperatures[J]. Journal of China Coal Society, 2006, 31(4):492-496.
|
[18] |
刘辉, 吴少华, 孙锐, 等. 快速热解褐煤焦的比表面积及孔隙结构[J]. 中国电机工程学报, 2005, 25(12):86-90. LIU H, WU S H, SUN R, et al. Specific area and pore structure of lignite char under the condition of fast pyrolysis[J]. Proceedings of the CSEE, 2005, 25(12):86-90.
|
[19] |
李兴龙, 许慎启, 周志杰, 等. 热解条件对淮南煤焦孔隙结构的影响[J]. 煤炭转化, 2009, (4):8-12. LI X L, XU S Q, ZHOU Z J, et al. Effect of pyrolysis condition on pore structure of Huainan coal char[J]. Coal Conversion, 2009, (4):8-12.
|
[20] |
王明敏, 张建胜, 张守玉, 等. 热解条件对煤焦比表面积及孔隙分布的影响[J]. 煤炭学报, 2008, 33(1):71-79. WANG M M, ZHANG J S, ZHANG S Y, et al. Effect of pyrolysis conditions on the char surface area and pore distribution[J]. Journal of China Coal Society, 2008, 33(1):71-79.
|
[21] |
SAIF T, LIN Q Y, BRANKO B, et al. Microstructural imaging and characterization of oil shale before and after pyrolysis[J]. Fuel, 2017, 197:562-574.
|
[22] |
BAI J R, WANG Q, JIAO G J. Study on the pore structure of oil shale during low-temperature pyrolysis[J]. Energy Procedia, 2012, 17:1689-1696.
|
[23] |
WANG X L, HE R, CHEN Y L. Evolution of porous fractal properties during coal devolatilization[J]. Fuel, 2008, 87:878-884.
|
[24] |
YU Y M, LIANG W G, HU Y Q, et al. Study of micropores development in lean coal with temperature[J]. International Journal of Rock Mechanics & Mining Sciences, 2012, 51:91-96.
|
[25] |
BAI F T, SUN Y H, LIU Y M, et al. Evaluation of the porous structure of Huadian oil shale during pyrolysis using multiple approaches[J]. Fuel, 2017, 187:1-8.
|
[26] |
PAN L W, DAI F Q, HUANG J N, et al. Study of the effect of mineral matters on the thermal decomposition of Jimsar oil shale using TG-MS[J]. Thermochimica Acta, 2016, 627/628/629:31-38.
|
[27] |
柏静儒, 林卫生, 潘朔, 等. 油页岩低温热解过程中轻质气体的析出特性[J]. 化工学报, 2015, 66(3):1104-1110. BAI J R, LIN W S, PAN S, et al. Characteristics of light gases evolution during oil shale pyrolysis[J]. CIESC Journal, 2015, 66(3):1104-1110.
|
[28] |
ARENILLAS A, RUBIERA F, PIS J J. Simultaneous hermogravimetric-mass spectrometric study on the pyrolysis behaviour of different rank coals[J]. Journal of Analytical and Applied Pyrolysis, 1999, 50(1):31-46.
|
[29] |
HAN F, MENG A H, LI Q H, et al. Thermal decomposition and evolved gas analysis (TG-MS) of lignite coals from Southwest China[J]. Journal of the Energy Institute, 2016, 89(1):94-100.
|
[30] |
KARABAKAN A, YÜRÜM Y. Effect of the mineral matrix in the reactions of oil shales(Ⅰ):Pyrolysis reactions of Turkish Göynük and US Green River oil shales[J]. Fuel, 1998, 77(12):1303-1309.
|
[31] |
YAN J W, JIANG X M, HAN X X, et al. A TG-FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen[J]. Fuel, 2013, 104(2):307-317.
|