CIESC Journal ›› 2017, Vol. 68 ›› Issue (11): 4323-4332.DOI: 10.11949/j.issn.0438-1157.20170553
Previous Articles Next Articles
GUO Xiangyu, YANG Qingyuan
Received:
2017-05-04
Revised:
2017-07-03
Online:
2017-11-05
Published:
2017-11-05
Supported by:
supported by the National Key Research Program of China (2016YFA0201701) and the National Natural Science Foundation of China (21322603, 21276009).
郭翔宇, 阳庆元
通讯作者:
阳庆元
基金资助:
国家重点研发计划项目(2016YFA0201701);国家自然科学基金项目(21322603,21276009)。
CLC Number:
GUO Xiangyu, YANG Qingyuan. Preparation and CO2 separation performance of mixed matrix membranes incorporated with open metal sites-containing MIL-101(Cr)[J]. CIESC Journal, 2017, 68(11): 4323-4332.
郭翔宇, 阳庆元. 含开放金属位点MIL-101(Cr)掺杂的混合基质膜制备及其CO2分离性能[J]. 化工学报, 2017, 68(11): 4323-4332.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170553
[1] | CHERUBINI F, PETERS G P, BERNTSEN T, et al. CO2 emissions from biomass combustion for bioenergy:atmospheric decay and contribution to global warming[J]. GCB Bioenergy, 2011, 3(5):413-426. |
[2] | SHINE K P, FUGLESTVEDT J S, HAILEMARIAM K, et al. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases[J]. Climatic Change, 2005, 68(3):281-302. |
[3] | BOLDRIN A, ANDERSEN J K, MØLLER J, et al. Composting and compost utilization:accounting of greenhouse gases and global warming contributions[J]. Waste Manage. Res., 2009, 27(8):800-812. |
[4] | DAVEY C J, LEAK D, PATTERSON D A. Hybrid and mixed matrix membranes for separations from fermentations[J]. Membranes, 2016, 6(1):17. |
[5] | PEREZ E V, KARUNAWEERA C, MUSSELMAN I H, et al. Origins and evolution of inorganic-based and MOF-based mixed-matrix membranes for gas separations[J]. Processes, 2016, 4(3):32. |
[6] | LI W, ZHANG Y, LI Q, et al. Metal-organic framework composite membranes:synthesis and separation applications[J]. Chem. Eng. Sci., 2015, 135:232-257. |
[7] | DONG G, LI H, CHEN V. Challenges and opportunities for mixed-matrix membranes for gas separation[J]. J. Mater. Chem. A, 2013, 1(15):4610-4630. |
[8] | SUMIDA K, ROGOW D L, MASON J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chem. Rev., 2011, 112(2):724-781. |
[9] | FURUKAWA H, KO N, GO Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990):424-428. |
[10] | ROWSELL J L, YAGHI O M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks[J]. J. Am. Chem. Soc., 2006, 128(4):1304-1315. |
[11] | FURUKAWA H, KIM J, OCKWIG N W, et al. Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedral[J]. J. Am. Chem. Soc., 2008, 130(35):11650-11661. |
[12] | WANG Z, COHEN S M. Postsynthetic modification of metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38(5):1315-1329. |
[13] | LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38(5):1477-1504. |
[14] | MORRIS R E, WHEATLEY P S. Gas storage in nanoporous materials[J]. Angew. Chem. Int. Ed., 2008, 47(27):4966-4981. |
[15] | MAHAJAN R, BURNS R, SCHAEFFER M, et al. Challenges in forming successful mixed matrix membranes with rigid polymeric materials[J]. J. Appl. Polym. Sci., 2002, 86(4):881-890. |
[16] | MAHAJAN R, VU D Q, KOROS W J. Mixed matrix membrane materials:an answer to the challenges faced by membrane based gas separations today?[J]. J. Chin. Inst. Chem. Eng., 2002, 33(1):77-86. |
[17] | BACHMAN J E, LONG J R. Plasticization-resistant Ni2(dobdc)/polyimide composite membranes for the removal of CO2 from natural gas[J]. Energ. Environ. Sci., 2016, 9(6):2031-2036. |
[18] | RODENAS T, VAN DALEN M, GARCÍA-PÉREZ E, et al. Visualizing MOF mixed matrix membranes at the nanoscale:towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI[J]. Adv. Funct. Mater., 2014, 24(2):249-256. |
[19] | BAN Y, LI Z, LI Y, et al. Confinement of ionic liquids in nanocages:tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture[J]. Angew. Chem., 2015, 127(51):15703-15707. |
[20] | GUO X, HUANG H, BAN Y, et al. Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation[J]. J. Membr. Sci., 2015, 478:130-139. |
[21] | LIU Q, NING L, ZHENG S, et al. Adsorption of carbon dioxide by MIL-101(Cr):regeneration conditions and influence of flue gas contaminants[J]. Sci. Rep., 2013, 3(7470):2916. |
[22] | NASERI M, MOUSAVI S F, MOHAMMADI T, et al. Synthesis and gas transport performance of MIL-101/Matrimid mixed matrix membranes[J]. J. Ind. Eng. Chem., 2015, 29:249-256. |
[23] | XIAO Y, CHUNG T S, GUAN H M, et al. Synthesis, cross-linking and carbonization of co-polyimides containing internal acetylene units for gas separation[J]. J. Membr. Sci., 2007, 302(1):254-264. |
[24] | ASKARI M, CHUNG T S. Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes[J]. J. Membr. Sci., 2013, 444(1):173-183. |
[25] | JAPIP S, WANG H, XIAO Y, et al. Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation[J]. J. Membr. Sci., 2014, 467(19):162-174. |
[26] | LIU L, CHAKMA A, FENG X. A novel method of preparing ultrathin poly (ether block amide) membranes[J]. J. Membr. Sci., 2004, 235(1):43-52. |
[27] | JIANG D, BURROWS A D, EDLER K J. Size-controlled synthesis of MIL-101(Cr) nanoparticles with enhanced selectivity for CO2 over N2[J]. CrystEngComm, 2011, 13(23):6916-6919. |
[28] | CHUNG T S, JIANG L Y, LI Y, et al. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation[J]. Prog. Polym. Sci., 2007, 32(4):483-507. |
[29] | REZAKAZEMI M, AMOOGHIN A E, MONTAZER-RAHMATI M M, et al. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs):an overview on current status and future directions[J]. Prog. Polym. Sci., 2014, 39(5):817-861. |
[30] | ZORNOZA B, TELLEZ C, CORONAS J, et al. Metal organic framework based mixed matrix membranes:an increasingly important field of research with a large application potential[J]. Micropor. Mesopor. Mater., 2013, 166(2):67-78. |
[31] | BAN Y, LI Y, PENG Y, et al. Metal-substituted zeolitic imidazolate framework ZIF-108:gas-sorption and membrane-separation properties[J]. Chem. Eur. J., 2014, 20(36):11402-11409. |
[32] | DONG X, HUANG K, LIU S, et al. Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane:defect formation and elimination[J]. J. Mater. Chem., 2012, 22(36):19222-19227. |
[33] | KOROS W J, MA Y H, SHIMIDZU T. Terminology for membranes and membrane processes (IUPAC Recommendations 1996)[J]. Pure Appl. Chem., 1996, 68(7):1479-1489. |
[34] | PEREZ E V, BALKUS K J, FERRARIS J P, et al. Mixed-matrix membranes containing MOF-5 for gas separations[J]. J. Membr. Sci., 2009, 328(1):165-173. |
[35] | AHN J, CHUNG W J, PINNAU I, et al. Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation[J]. J. Membr. Sci., 2008, 314(1):123-133. |
[36] | LLEWELLYN P L, BOURRELLY S, SERRE C, et al. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101[J]. Langmuir, 2008, 24(14):7245-7250. |
[37] | JEAZET H B T, STAUDT C, JANIAK C. Metal-organic frameworks in mixed-matrix membranes for gas separation[J]. Dalton Trans., 2012, 41(46):14003-14027. |
[38] | BALAZS A C, EMRICK T, RUSSELL T P. Nanoparticle polymer composites:where two small worlds meet[J]. Science, 2006, 314(5802):1107-1110. |
[39] | SOUZA V C, QUADRI M G N. Organic-inorganic hybrid membranes in separation processes:a 10-year review[J]. Braz. J. Chem. Eng., 2013, 30(4):683-700. |
[40] | MOORE T T, KOROS W J. Non-ideal effects in organic-inorganic materials for gas separation membranes[J]. J. Mol. Struct., 2005, 739(1/2/3):87-98. |
[41] | LI Y, CHUNG T S, CAO C, et al. The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes[J]. J. Membr. Sci., 2005, 260(1):45-55. |
[42] | LI Y, GUAN H M, CHUNG T S, et al. Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)-zeolite A mixed matrix membranes[J]. J. Membr. Sci., 2006, 275(1):17-28. |
[43] | NUGENT P, BELMABKHOUT Y, BURD S D, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation[J]. Nature, 2013, 495(7439):80-84. |
[44] | BAE Y S, FARHA O K, HUPP J T, et al. Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification[J]. J. Mater. Chem., 2009, 19(15):2131-2134. |
[45] | BASTANI D, ESMAEILI N, ASADOLLAHI M. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications:a review[J]. J. Ind. Eng. Chem., 2013, 19(2):375-393. |
[46] | ROBESON L M. Correlation of separation factor versus permeability for polymeric membranes[J]. J. Membr. Sci., 1991, 62(2):165-185. |
[47] | ROBESON L M. The upper bound revisited[J]. J. Membr. Sci., 2008, 320(1):390-400. |
[48] | THOMPSON J A, VAUGHN J T, BRUNELLI N A, et al. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas[J]. Micropor. Mesopor. Mater., 2014, 192:43-51. |
[49] | BAE T H, LEE J S, QIU W, et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals[J]. Angew. Chem., 2010, 49(51):9863-9866. |
[50] | SHAHID S, NIJMEIJER K. Performance and plasticization behavior of polymer-MOF membranes for gas separation at elevated pressures[J]. J. Membr. Sci., 2014, 470:166-177. |
[51] | ZORNOZA B, MARTINEZ-JOARISTI A, SERRA-CRESPO P, et al. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures[J]. Chem. Commun., 2011, 47(33):9522-9524. |
[52] | XIAO Y C, VINH-THANG H, RODRIGUE D, et al. Amine-functionalized MIL-53 metal-organic framework in polyimide mixed matrix membranes for CO2/CH4 separation[J]. Ind. Eng. Chem. Res., 2012, 51(19):6895-6906. |
[53] | RODENAS T, DALEN M V, SERRA-CRESPO P, et al. Mixed matrix membranes based on NH2-functionalized MIL-type MOFs:influence of structural and operational parameters on the CO2/CH4 separation performance[J]. Micropor. Mesopor. Mater., 2014, 192:35-42. |
[54] | NIK O G, CHEN X Y, KALIAGUINE S. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation[J]. J. Membr. Sci., 2012, 413/414:48-61. |
[55] | LIN R, GE L, HOU L, et al. Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance[J]. ACS Appl. Mater. Interf., 2014, 6(8):5609-5618. |
[56] | BASU S, CANO-ODENA A, VANKELECOM I F J. Asymmetric Matrimid®/Cu3(BTC)2 mixed-matrix membranes for gas separations[J]. J. Membr. Sci., 2010, 362(1):478-487. |
[57] | XIN Q, LIU T, LI Z, et al. Mixed matrix membranes composed of sulfonated poly(ether ether ketone) and a sulfonated metal-organic framework for gas separation[J]. J. Membr. Sci., 2015, 488:67-78. |
[58] | ADAMS R, CARSON C, WARD J, et al. Metal organic framework mixed matrix membranes for gas separations[J]. Micropor. Mesopor. Mater., 2010, 131(1):13-20. |
[59] | CAR A, STROPNIK C, PEINEMANN K V. Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation[J]. Desalination, 2006, 200(1/2/3):424-426. |
[60] | GONG H, NGUYEN T H, WANG R, et al. Separations of binary mixtures of CO2/CH4 and CO2/N2 with mixed-matrix membranes containing Zn(pyrz)2(SiF6) metal-organic framework[J]. J. Membr. Sci., 2015, 495:169-175. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[6] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[7] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[8] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[9] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[10] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[11] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[12] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[13] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[14] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[15] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||