CIESC Journal ›› 2017, Vol. 68 ›› Issue (12): 4717-4722.DOI: 10.11949/j.issn.0438-1157.20170653
Previous Articles Next Articles
CHEN Fengqiao, CUI Chang, QI Liqiang
Received:
2017-05-19
Revised:
2017-08-02
Online:
2017-12-05
Published:
2017-12-05
Supported by:
supported by the National Natural Science Foundation of China (21376072) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China(2017MS140).
陈凤桥, 崔畅, 齐立强
通讯作者:
齐立强
基金资助:
国家自然科学基金项目(21376072);中央高校基本科研业务费专项资金(2017MS140)。
CLC Number:
CHEN Fengqiao, CUI Chang, QI Liqiang. Utilizing organic acids for V2O5 recovery from denitration catalyst alkaline inactivation[J]. CIESC Journal, 2017, 68(12): 4717-4722.
陈凤桥, 崔畅, 齐立强. 碱失活SCR脱硝催化剂的有机酸回收[J]. 化工学报, 2017, 68(12): 4717-4722.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170653
[1] | BOSCH H, JANSSEN F. Preface[J]. Catalysis Today, 1988, 2(4):v. |
[2] | 薛纪纬. SCR催化剂的制备和脱硝性能影响因素的研究[D]. 北京:北京交通大学, 2010. XUE J W. Research on SCR catalyst preparation and influence factors of De-NOx performance[D]. Beijing:Beijing Jiaotong University, 2010. |
[3] | CHEN L, LI J H, GE M F. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chemical Engineering Journal, 2011, 170(2/3):531-537. |
[4] | CASANOVA M, NODARI L, SAGAR A, et al. Preparation, characterization and NH3-SCR activity of FeVO4 supported on TiO2-WO3-SiO2[J]. Applied Catalysis B:Environmental, 2015, 176:699-708. |
[5] | YANG J, YANG Q, SUN J, et al. Effects of mercury oxidation on V2O5-WO3/TiO2 catalyst properties in NH3-SCR process[J]. Catalysis Communications, 2015, 59:78-82. |
[6] | BUSCA G, LIETTI L, RAMIS G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:a review[J]. Applied Catalysis B:Environmental, 1998, 18(1/2):1-36. |
[7] | NICOSIA D, CZEKAJ I, KROECHER O. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution (Ⅱ):Characterization study of the effect of alkali and alkaline earth metals[J]. Applied Catalysis B:Environmental, 2008, 77(3/4):228-236. |
[8] | 于晓海, 刘波. SCR脱硝催化剂的设计与维护[J]. 中国氯碱, 2012, (5):44-46. YU X H, LIU B. The design and maintenance of SCR catalyst[J]. China Chlor-Alkali, 2012, (5):44-46. |
[9] | LI Y T, ZHONG Q. The characterization and activity of F-doped vanadia/titania for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Journal of Hazardous Materials, 2009, 172(2/3):635-640. |
[10] | WANG X, ZHENG Y, XU Z, et al. Low-temperature selective catalytic reduction of NO over MnOx/CNTs catalysts. Effect of thermal treatment condition[J]. Catalysis Communications, 2014, 50:34-37. |
[11] | PAN W, HONG J, GUO R, et al. Effect of support on the performance of Mn-Cu oxides for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4):2224-2227. |
[12] | LEI T Y, LI Q C, CHEN S F, et al. KCl-induced deactivation of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO by NH3:comparison of poisoning methods[J]. Chemical Engineering Journal, 2016, 296:1-10. |
[13] | LU X N, SONG C Y. The study of the MnOx/TiO2-ZrO2 used in the sintering flue gas low-temperature selective catalytic reaction[J]. Adv. Mater. Res., 2013, 641/642:551-556. |
[14] | ZHAO L, LI C, ZHANG J, et al. Promotional effect of CeO2modified support on V2O5-WO3/TiO2 catalyst for elemental mercury oxidation in simulated coal-fired flue gas[J]. Fuel, 2015, 153:361-369. |
[15] | 孙海峰, 杨广春, 高景玉. 延长SCR脱硝催化剂使用寿命的措施探讨[J]. 华电技术, 2009, 31(12):19-21. SUN H F, YANG G C, GAO J Y. Discussion on extending service life of SCR De-NOx catalyst[J]. Huadian Technology, 2009, 31(12):19-21. |
[16] | PENA D A, UPHADE B S, SMIRNIOTIS P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3(Ⅰ):Evaluation and characterization of first row transition metals[J]. Journal of Catalysis, 2004, 221(2):421-431. |
[17] | 高凤雨, 唐晓龙, 易红宏, 等. 商用SCR脱硝催化剂(V2O5-WO3/TiO2)碱金属中毒及再生[J]. 科学通报, 2014, 59(26):2560-2566. GAO F Y, TANG X L, YI H H, et al. The poisoning and regeneration effect of alkali metals deposed over commercial V2O5-WO3/TiO2 catalysts on SCR of NO by NH3[J]. Chin. Sci. Bull., 2014, 59(26):2560-2566 |
[18] | ZHENG Y, JENSEN A D, JOHNSSON J E, et al. Deactivation of V2O5-WO3-TiO2 SCR catalyst at biomass fired power plants:elucidation of mechanisms by lab and pilot-scale experiments[J]. Applied Catalysis B:Environmental, 2008, 83(3/4):186-194. |
[19] | LISI L, LASORELLA G, MALLOGGI S, et al. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts[J]. Applied Catalysis B:Environmental, 2004, 50(4):251-258. |
[20] | LI Q C, CHEN S F, LIU Z Y, et al. Combined effect of KCl and SO2 on the selective catalytic reduction of NO by NH3 over V2O5/TiO2 catalyst[J]. Applied Catalysis B:Environmental, 2015, 164:475-482. |
[21] | DAHLIN S, NILSSON M, BÄCKSTRÖM D, et al. Multivariate analysis of the effect of biodiesel-derived contaminants on V2O5-WO3/TiO2 SCR catalysts[J]. Applied Catalysis B:Environmental, 2016, 183:377-385. |
[22] | 陈其颢, 朱林. SCR失效催化剂及其处置与再利用技术[J]. 电力科技与环保, 2012, 28(3):27-28. CHEN Q H, ZHU L. Disposal and recycling technologies of disabled SCR catalyst[J]. Electric Power Environmental Protection, 2012, 28(3):27-28. |
[23] | 增瑞, 郝永利. 废弃SCR催化剂回收利用项目建设格局的分析[J]. 中国环保产业, 2014, 9:41-46. ZENG R, HAO Y L. Analysis on project construction pattern of abandoned SCR catalyzer recovery and utilization[J]. China Environmental Protection Industry, 2014, 9:41-46. |
[24] | 张立, 陈崇明, 王平. SCR脱硝催化剂的再生与回收[J]. 电站辅机, 2012, 33(3):27-30. ZHANG L, CHEN C M, WANG P. Regeneration and recovery of SCR catalyst De-NOx[J]. Power Station Auxiliary Equipment, 2012, 33(3):27-30. |
[25] | LOZANO L J, JUAN D. Leaching of vanadium from spent sulphuric acid catalysts[J]. Minerals Engineering, 2001, 14 (5):543-546. |
[26] | 陈兴龙, 肖连生, 徐劼, 等. 从废石油催化剂中回收钒和钼的试验研究[J].矿冶工程, 2004, 24(3):47-49. CHEN X L, XIAO L S, XU J, et al. A study on recovering vanadium and molybdenum from spent catalyst[J]. Mining and Metallurgical Engineering, 2004, 24(3):47-49. |
[27] | KAR B B, MURTHY B V R, MISRA V N. Extraction of molybdenum from spent catalyst by salt-roasting[J]. International Journal of Mineral Processing, 2005, 76 (3):143-147 |
[28] | CHEN Y, FENG Q, ZHANG G, et al. Study on the recycling of valuable metals in spent Al2O3-based catalyst[J]. Minerals Engineering, 2006, 19(1):94-97. |
[29] | 胡建锋, 朱云, 胡汉. 从废催化剂中综合提取钒和钼[J]. 稀有金属, 2006, 30(5):711-714. HU J F, ZHU Y, HU H. Comprehensive recovery of vanadium, molybdenum and nickel from dead catalyst[J]. Chinese Journal of Rare Metals, 2006, 30(5):711-714. |
[30] | PARK K H, MOHAPATRA D, NAM C W. Two stage leaching of activated spent HDS catalyst and solvent extraction of aluminium using organo-phosphinic extractant, Cyanex 272[J]. Journal of Hazardous Materials, 2007, 148(1/2):287-295. |
[31] | 王新文, 雷兆敏, 段铭有, 等. 从废钒催化剂中回收精制五氧化二钒的试验研究[J]. 硫酸工业, 1998, 2:47-51. WANG X W, LEI Z M, DUAN M Y, et al. Experimental study of recovering refined vanadium pentoxide from waste vanadium catalyst[J]. Sulfuric Acid Industry, 1998, 2:47-51. |
[32] | 刘安华, 李辽沙, 余亮. 含钒固废提钒技术及展望[J]. 金属矿山, 2003, 10:61-64. LIU A H, LI L S, YU L. Technology of vanadium extraction from V-bearing solid wastes and its prospect[J]. Metal Mine, 2003, 10:61-64. |
[33] | 林德海, 宋宝华, 王中原. 废弃SCR脱硝催化剂资源回收[J]. 山东化工, 2013, 42:8-10. LIN D H, SONG B H, WANG Z Y. Discussion about resource utilization for disable SCR catalyst[J]. Shandong Chemical, 2013, 42:8-10. |
[34] | 孙锦直, 刘惠青. 废催化剂回收利用[M]. 北京:化学工业出版社, 2001. SUN J Z, LIU H Q. Waste Catalyst Recycling and Utilizing[M]. Beijing:Chemical Industry Press, 2001. |
[35] | 景中建, 郝喜才. 从废钒催化剂中回收钒的实验研究[J]. 无机盐工业, 2010, 42(6):55-57. JING Z J, HAO X C. Study on recovery vanadium from waste catalyst containing vanadium[J]. Inorganic Chemicals Industry, 2010, 42(6):55-57. |
[36] | 邵延海, 冯其明, 欧乐明, 等. 从废催化剂氨浸渣中综合回收钒和钼的研究[J]. 稀有金属, 2009, 33(4):606-610. SHAO Y H, FENG Q M, OU L M, et al. Comprehensive recovery of vanadium and molybdenum from ammonia leaching residue of spent catalyst[J]. Chinese Journal of Rare Metals, 2009, 33(4):606-610. |
[37] | 郝喜才, 景中建, 胡斌杰. 从废钒催化剂中回收钒氧化物的研究[J]. 无机盐工业, 2010, 42(11):48-50. HAO X C, JING Z J, HU B J. Study on recovery of vanadium oxide from waste catalyst containing vanadium[J]. Inorganic Chemical Industry, 2010, 42(11):48-50. |
[38] | 钱强. 从废弃钒渣中提取五氧化二钒[J]. 湿法冶金, 2008, 27(2):101-102. QIAN Q. Extraction of V2O5 from vanadium-bearing waste slag[J]. Hydrometallurgy of China, 2008, 27(2):101-102. |
[39] | 刘公召, 隋智通. 萃取法从催化剂中提取V2O5的研究[J]. 矿产综合利用, 2001, (6):41-43. LIU G Z, SUI Z T. Study on preparation of vanadium pentoxide from spent catalyst by extraction method[J]. Multipurpose Utilization of Mineral Resources, 2001, (6):41-43. |
[40] | JIANG F H, ZHANG P. Experiment of recovering vanadium pentoxide from waste vanadium catalyst[J]. Sulfuric Acid Industry, 2000, (4):28-30. |
[41] | 王虎. SCR脱硝催化剂中金属氧化物的回收利用[R]. 武汉:武汉凯迪电力有限公司, 2011. WANG H. Recovery and utilization of metal components from SCR De-NOx catalysts[R]. Wuhan:Wuhan Kaidi Electric Power Co., Ltd., 2011. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[6] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[7] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[8] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[9] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[10] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[11] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[12] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[13] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[14] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[15] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||