CIESC Journal ›› 2018, Vol. 69 ›› Issue (2): 682-689.DOI: 10.11949/j.issn.0438-1157.20170939
Previous Articles Next Articles
YU Chao1,2, LI Changming2, ZHANG Yusheng1, GUO Feng2, YU Jian2, YANG Yunquan1, XU Guangwen2
Received:
2017-07-24
Revised:
2017-11-08
Online:
2018-02-05
Published:
2018-02-05
Supported by:
supported by the Chinese Academy of Sciences STS Program (KFJ-SW-STS-149), the International Project on Innovative Cooperation between Governments (2016YFE0128300), the National Natural Science Foundation of China (21601192) and the National Key Research and Development Program of China (2017YFB0310400).
于超1,2, 李长明2, 张喻升1, 郭凤2, 余剑2, 杨运泉1, 许光文2
通讯作者:
余剑
基金资助:
中国科学院STS计划项目(KFJ-SW-STS-149);政府间国际创新合作项目(2016YFE0128300);国家自然科学基金项目(21601192);国家重点研发计划项目(2017YFB0310400)。
CLC Number:
YU Chao, LI Changming, ZHANG Yusheng, GUO Feng, YU Jian, YANG Yunquan, XU Guangwen. Effect of ceramic matrices on dispersion of loaded catalyst and DeNOx activity of catalytic filters[J]. CIESC Journal, 2018, 69(2): 682-689.
于超, 李长明, 张喻升, 郭凤, 余剑, 杨运泉, 许光文. 典型陶瓷基体对催化滤芯中催化剂分散及脱硝活性的影响[J]. 化工学报, 2018, 69(2): 682-689.
[1] | LACHNIT F. Apparatus for the purification of combustion gases:US3920427[P]. 1975-11-18. |
[2] | QIU Y, LIU B, DU J, et al. The monolithic cordierite supported V2O5-MoO3/TiO2 catalyst for NH3-SCR[J]. Chemical Engineering Journal, 2016, 294:264-272. |
[3] | 姜雨泽, 宋荣杰. 火电厂除尘技术的发展动态研究[J]. 环境科学与技术, 2008, 31(8):59-64. JIANG Y Z, SONG R J. Development of dedust technology for coal-fired power plants[J]. Environmental Science and Technology, 2008, 31(8):59-64. |
[4] | CHOI J H, KIM S K, HA S J, et al. The preparation of V2O5/TiO2 catalyst supported on the ceramic filter candle for selective reduction of NO[J]. Korean Journal of Chemical Engineering, 2001, 18(4):456-462. |
[5] | CHEN Y S, HSIAU S S, SMID J, et al. Removal of dust particles from fuel gas using a moving granular bed filter[J]. Fuel, 2016, 182:174-187. |
[6] | HEIREDAL M L, JENSEN A D, THØGERSEN J R, et al. Pilot-scale investigation and CFD modeling of particle deposition in low-dust monolithic SCR DeNOx catalysts[J]. AIChE Journal, 2013, 59(6):1919-1933. |
[7] | SCHAUB G, UNRUH D, WANG J, et al. Kinetic analysis of selective catalytic NOx reduction (SCR) in a catalytic filter[J]. Chemical Engineering and Processing:Process Intensification, 2003, 42(5):365-371. |
[8] | KUDLAC G A, FARTHING G A, SZYMANSKI T, et al. SNRB catalytic baghouse laboratory pilot testing[J]. Environmental Progress & Sustainable Energy, 1992, 11(1):33-38. |
[9] | SARACCO G, SPECCHIA S, SPECCHIA V. Catalytically modified fly-ash filters for NOx reduction with NH3[J]. Chemical Engineering Science, 1996, 51(24):5289-5297. |
[10] | CHOI J H, KIM S K, BAK Y C. The reactivity of V2O5-WO3-TiO2 catalyst supported on a ceramic filter candle for selective reduction of NO[J]. Korean J. Chem. Eng., 2001, 18:719-724. |
[11] | CHOI J H, KIM S K, BAK Y C, et al. Pt-V2O5-WO3/TiO2 catalysts supported on SiC filter for NO reduction at low temperature[J]. Korean J. Chem. Eng., 2005, 22:844-851. |
[12] | NACKEN M, HEIDENREICH S, HACKEL M, et al. Catalytic activation of ceramic filter elements for combined particle separation, NOx removal and VOC total oxidation[J]. Applied Catalysis B:Environmental, 2007, 70:370-376. |
[13] | HEIDENREICH S, NACKEN M, HACKEL M, et al. Catalytic filter elements for combined particle separation and nitrogen oxides removal from gas streams[J]. Powder Technol., 2008, 180:86-90. |
[14] | KIM Y A, CHOI J H, SCOTT J, et al. Preparation of high porous Pt-V2O5-WO3/TiO2/SiC filter for simultaneous removal of NO and particulates[J]. Powder Technol., 2008, 180:79-85. |
[15] | ZUERCHER S, PABST K, SCHAUB G. Ceramic foams as structured catalyst inserts in gas-particle filters for gas reactions-effect of backmixing[J].Applied Catalysis A:General, 2009, 357:85-92. |
[16] | 安振, 牛国平, 谭增强, 等. 陶瓷催化过滤器制备及其脱硝性能研究[J]. 热力发电, 2017, 46(2):36-41. AN Z, NIU G P, TAN Z Q, et al.Preparation of ceramic catalytic filter and its deNOx performance[J]. Thermal Power Generation, 2017, 46(2):36-41. |
[17] | 张喻升, 余剑, 李长明, 等. 钒钨钛堇青石基烟气脱硝催化滤芯的研制[J]. 过程工程学报, 2017, 17:1249-1256. ZHANG Y S, YU J, LI C M, et al. The preparation of V2O5-WO3-TiO2/cordierite based catalytic filter for removal of NOx from flue gas[J]. The Chinese Journal of Process Engineering, 2017, 17:1249-1256. |
[18] | 邱伟志, 陈史民. 多孔陶瓷滤芯的制造方法:1548402 A[P]. 2004. QIU W Z, CHEN S M. Making process of porous ceraimc filter element:1548402 A[P]. 2004. |
[19] | FORZATTI P. Present status and perspectives in de-NOx SCR catalysis[J]. Applied Catalysis A:General, 2001, 222(1):221-236. |
[20] | APOSTOLESCU N, SCHRODER T, KURETI S. Study on the mechanism of the reaction of NO2 with aluminium oxide[J]. Applied Catalysis B:Environmental, 2004, 51(1):43-50. |
[21] | 刘慷, 张强, 虞宏, 等. 火电厂脱NOx用SCR催化剂种类及工程应用[J]. 电力环境保护, 2009, 25(4):9-12. LIU K, ZHANG Q, YU H, et al. Species and application of SCR catalyst for flue gas denitrification in coal-fired power plant[J]. Electric Power Environmental Protection, 2009, 25(4):9-12. |
[22] | CHEN J P, YANG R T. Mechanism of poisoning of the V2O5/TiO2 catalyst for the reduction of NO by NH3[J]. Journal of Catalysis, 1990, 125(2):411-420. |
[23] | LARSSON A C, EINVALL J, ANDERSSON A, et al. Targeting by comparison with laboratory experiments the SCR catalyst deactivation process by potassium and zinc salts in a large-scale biomass combustion boiler[J]. Energy & fuels, 2006, 20(4):1398-1405. |
[24] | ZHENG Y, JENSEN A D, JOHNSSON J E. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant[J]. Applied Catalysis B:Environmental, 2005, 60(3):253-264. |
[25] | FERREIRA M L, VOLPE M. A combined theoretical and experimental study of supported vanadium oxide catalysts[J]. Journal of Molecular Catalysis A:Chemical, 2002, 184(1):349-360. |
[26] | BESSELMANN S, FREITAG C, HINRICHSEN O, et al. Temperature-programmed reduction and oxidation experiments with V2O5/TiO2 catalysts[J]. Physical Chemistry Chemical Physics, 2001, 3(21):4633-4638. |
[27] | ARNOLDY P, JONGE J C M D, MOULIJN J A. ChemInform abstract:temperature-programmed reduction of MOO3 and MOO2[J]. Chemischer Informationsdienst, 1986, 17(4):4517-4526. |
[28] | Vermaire D C. The preparation of WO3/TiO2 and WO3/Al2O3 and characterization by temperature-programmed reduction[J]. Journal of Catalysis, 1989, 116(2):309-317. |
[29] | BIRKHOLD F, MEINGAST U, WASSERMANN P, et al. Analysis of the injection of urea-water-solution for automotive SCR DeNOx-systems:modeling of two-phase flow and spray/wall-interaction[R]. SAE Technical Paper, 2006. |
[30] | SCHAUB G, UNRUH D, WANG J, et al. Kinetic analysis of selective catalytic NOx reduction (SCR) in a catalytic filter[J]. Chemical Engineering and Processing:Process Intensification, 2003, 42(5):365-371. |
[31] | REN H, ZHANG L, SU K, et al. Thermodynamic study of the chemical vapor deposition in the SiCl3 CH3-NH3-H2 system[J]. Chemical Physics Letters, 2015, 623:29-36. |
[32] | CHEN L, SI Z, WU X, et al. Effect of water vapor on NH3-NO/NO2 SCR performance of fresh and aged MnOx-NbOx-CeO2 catalysts[J]. Journal of Environmental Sciences, 2015, 31:240-247. |
[33] | SHIMIZU T, HASEGAWA M, INAGAKI M. Effect of water vapor on reaction rates of limestone-catalyzed NH3 oxidation and reduction of N2O under fluidized bed combustion conditions[J]. Energy & Fuels, 2000, 14(1):104-111. |
[34] | ZHUO Y Q, LI T J, XU C, et al. Effect of water vapor on NH3 oxidation over CaO at 700-850℃[J]. Journal of Engineering Thermophysics, 2009, 7:44. |
[35] | SI Z, WENG D, WU X, et al. NH3-SCR activity, hydrothermal stability, sulfur resistance and regeneration of Ce0.75Zr0.25O2-PO43 catalyst[J]. Catalysis Communications, 2012, 17:146-149. |
[36] | SHIN B, DUNG T W, LEE H. Structure, surface acidity and catalytic activity of WO3-TiO2 catalyst for NH3-SCR of NOx[J]. J. Ceram. Process. Res., 2014, 15(2):125-129. |
[37] | LIU X, NING P, LI H, et al. Probing NH3-SCR catalytic activity and SO2 resistance over aqueous-phase synthesized Ce-W@TiO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2016, 44(2):225-231. |
[1] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[2] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[3] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[4] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[5] | Hui YANG, Hongze LI, Quan CHEN, Zexi ZHENG, Ran LI, Qicheng SUN. Dynamics of the transition of mass flow to funnel flow in a silo [J]. CIESC Journal, 2022, 73(6): 2722-2731. |
[6] | Yilin LIU, Yu LI, Yaxiong YU, Zheqing HUANG, Qiang ZHOU. Construction of two parameter mesoscale heat transfer model for gas-solid flow based on resetting temperature method [J]. CIESC Journal, 2022, 73(6): 2612-2621. |
[7] | Tianqi TANG, Yurong HE. Effect of magnetic field on the mesoscale structure evolution process in a wet particle fluidized bed [J]. CIESC Journal, 2022, 73(6): 2636-2648. |
[8] | Biao HAN, Chao SHANG, Yongheng JIANG, Dexian HUANG. Object-oriented refinery plant-wide scheduling optimization model and program framework [J]. CIESC Journal, 2022, 73(4): 1623-1630. |
[9] | Wei ZHOU, Fuye WANG, Ning HE, Haibin YU, Xinbin MA, Jiaxu LIU. Study on the relationship of active centers and catalytic performance of Cu/SSZ-13 for NH3-SCR [J]. CIESC Journal, 2022, 73(2): 672-680. |
[10] | Meng HUO, Xiaowan PENG, Jin ZHAO, Qiuwei MA, Chun DENG, Bei LIU, Guangjin CHEN. COSMO-RS based solvent screening and H2/CO separation experiments for CO absorption by ionic liquids [J]. CIESC Journal, 2022, 73(12): 5305-5313. |
[11] | Shiyang YE, Min CHENG, Xu JI, Yiyang DAI, Yagu DANG, Kexin BI, Zhiwei ZHAO, Li ZHOU. High-throughput computational screening strategy for high-performance COF materials: separation of hexane isomers [J]. CIESC Journal, 2022, 73(11): 5138-5149. |
[12] | Xing TIAN, Jiayue ZHANG, Zhigang GUO, Jian YANG, Qiuwang WANG. Flow and heat transfer characteristics of particles flowing along the plate with different mixing elements [J]. CIESC Journal, 2022, 73(11): 4884-4892. |
[13] | Yuxian XIE, Tao LIU, Sheng SU, Lijun LIU, Yuxiu ZHONG, Zhiwei MA, Kai XU, Yi WANG, Song HU, Jun XIANG. Influence of oxygen content in industrial kiln flue gas on NH3-SCR denitration reaction of vanadium-titanium catalysts [J]. CIESC Journal, 2022, 73(10): 4410-4418. |
[14] | LI Minxia, ZHAN Haomiao, WANG Pai, LIU Xuetao, LI Yuhan, MA Yitai. A CO2 transcritical refrigeration system with ejector and economizer [J]. CIESC Journal, 2021, 72(S1): 146-152. |
[15] | Liang SHAN, Rongqiang YIN, Hui WANG, Chuanjun FEI, Qingqing ZHOU, Jie XU, Zhiqiang WANG, Tao XU, Jianjun CHEN, Junhua LI. Preparation of VMoTi/glass fiber catalytic filter-cloth and research on its dust and NOx synergistic removal performance [J]. CIESC Journal, 2021, 72(9): 4892-4899. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 625
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 478
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||