[1] |
ALVES J J, TOWLER G P. Analysis of refinery hydrogen distribution systems[J]. Ind. Eng. Chem. Res., 2002, 41(23):5759-5769.
|
[2] |
ALVES J. Analysis and design of refinery hydrogen distribution systems[D]. Manchester:University of Manchester, 1999.
|
[3] |
EL-HALWAGI M M, GABRIEL F, HARELL D. Rigorous graphical targeting for resource conservation via material recycle/reuse networks[J]. Ind. Eng. Chem. Res., 2003, 42(19):4319-4328.
|
[4] |
KAZANTZI V, EL-HALWAGI M M. Targeting material reuse via property integration[J]. Chem. Eng. Progr., 2005, 101(8):28-37.
|
[5] |
ZHAO Z, LIU G L, FENG X. New graphical method for the integrat-ion of hydrogen distribution systems[J]. Ind. Eng. Chem. Res., 2006, 45(19):6512-6517.
|
[6] |
SAW S Y, LEE L, LIM M H, et al. An extended graphical targeting technique for direct reuse/recycle in concentration and property-based resource conservation networks[J]. Clean. Technol. Envir., 2011, 13(3):47-57.
|
[7] |
AGRAWAL V, SHENOY U V. Unified conceptual approach to targeting and design of water and hydrogen networks[J]. AIChE J., 2006, 52(3):1071-1082.
|
[8] |
LIU G L, LI H, FENG X, et al. A conceptual method for targeting the maximum purification feed flow rate of hydrogen network[J]. Chem. Eng. Sci., 2013, 88:33-47.
|
[9] |
FOO D C Y, MANAN Z A. Setting the minimum utility gas flowrate targets using cascade analysis technique[J]. Ind. Eng. Chem. Res., 2006, 45(17):5986-5995.
|
[10] |
NG D K S, FOO D C Y, TAN R R. Automated targeting technique for single-impurity resource conservation networks(Ⅱ):Single-pass and partitioning waste-interception systems[J]. Ind. Eng. Chem. Res., 2009, 48(16):7647-7661.
|
[11] |
NG D K S, FOO D C Y, TAN R R, et al. Automated targeting for conventional and bilateral property-based resource conservation network[J]. Chem. Eng. J., 2009, 149(1):87-101.
|
[12] |
NG D K S, FOO D C Y, TAN R R, et al. Automated targeting technique for concentration-and property-based total resource conservation network[J]. Comput. Chem. Eng., 2010, 34(5):825-845.
|
[13] |
NG D K S, FOO D C Y, TAN R R. Automated targeting technique for single-impurity resource conservation networks(Ⅰ):Direct reuse/recycle[J]. Ind. Eng. Chem. Res., 2009, 48(16):7637-7646.
|
[14] |
LIU G L, LI H, FENG X, et al. Novel method for targeting the optimal purification feed flow rate of hydrogen network with purification reuse/recycle[J]. AIChE J., 2013, 59(6):1964-1980.
|
[15] |
LIU G L, TANG M, FENG X, et al. Evolutionary design methodology for resource allocation networks with multiple impurities[J]. Ind. Eng. Chem. Res., 2011, 50(5):2959-2970.
|
[16] |
杨敏博, 冯霄. 提纯回用氢网络的夹点变化规律[J]. 化工学报, 2013, 64(12):4544-4549. YANG M B, FENG X. Change rules of pinch point for hydrogen distribution systems with purification[J].CIESC Journal, 2013, 64(12):4544-4549.
|
[17] |
ZHANG Q, FENG X, LIU G L, et al. A novel graphical method for the integration of hydrogen distribution systems with purification reuse[J]. Chem. Eng. Sci., 2011, 66(4):797-809.
|
[18] |
YANG M, FENG X, LIU G L, et al. Graphical method for identifying the optimal purification process of hydrogen systems[J]. Energy, 2014, 73(14):829-837.
|
[19] |
WANG Y, ZHENG M, LIU G, et al. Graphical method for simultaneous optimization of the hydrogen recovery and purification feed[J]. Int. J. Hydrogen Energy, 2016, 41(4):2631-2648.
|
[20] |
DAI W, SHEN R, ZHANG D, et al. The integration based method for identifying the variation trend of fresh hydrogen consumption and optimal purification feed[J]. Energy, 2017, 119:732-743.
|
[21] |
HALLALE N, LIU F. Refinery hydrogen management for clean fuels production[J]. Adv. Environ. Res., 2001, 6(1):81-98.
|
[22] |
JIA X X, LIU G L. Optimization of hydrogen networks with multiple impurities and impurity removal[J]. Chin. J. Chem. Eng., 2016, 24(9):1236-1242.
|
[23] |
ZHANG J, ZHU X X, TOWLER G P. A simultaneous optimization strategy for overall integration in refinery planning[J]. Ind. Eng. Chem. Res., 2001, 40(12):2640-2653.
|
[24] |
ZHOU L, LIAO Z W, WANG J D, et al. Optimal design of sustainable hydrogen networks[J]. Int. J. Hydrogen Energy, 2013, 38(7):2937-2950.
|
[25] |
JAGANNATH A, ALMANSOORI A. Modeling of hydrogen networks in a refinery using a stochastic programming approach[J]. Ind. Eng. Chem. Res., 2014, 53(51):19715-19735.
|
[26] |
WANG Y F, JIN J, FENG X, et al. Optimal operation of a refinery's hydrogen network[J]. Ind. Eng. Chem. Res., 2014, 53(37):14419-14422.
|
[27] |
DAI W, LIU G L, LIANG J. Targeting the hydrogen network and optimal feed using rigorous simulation[J]. Comput. Chem. Eng., 2016, 38:235-240.
|
[28] |
ZHOU L, LIAO Z, WANG J, et al. Hydrogen sulfide removal process embedded optimization of hydrogen network[J]. Int. J. Hydrogen Energy, 2012, 37(23):18163-18174.
|
[29] |
DENG C, PAN H M, LEE J Y, et al. Synthesis of hydrogen network with hydrogen header of intermediate purity[J]. Int. J. Hydrogen Energy, 2014, 39(1):3049-3062.
|
[30] |
邓春, 周宇航, 周业杨, 等. 具有最小压缩功的氢网络优化设计[J]. 化工学报, 2015, 66(12):4883-4887. DENG C, ZHOU Y H, ZHOU Y Y, et al. Optimal design of hydrogen network with minimum compression work[J]. CIESC Journal, 2015, 66(12):4883-4887.
|
[31] |
WU S D, WANG Y F, FENG X. Unified model of purification units in hydrogen networks[J]. Chin. J. Chem. Eng., 2014, 22(6):730-733.
|
[32] |
刘金豪, 李爱红, 刘智勇. 简捷法确定提纯回用氢网络目标值[J]. 化工学报, 2016, 67(3):1008-1014. LIU J H, LI A H, LIU Z Y. A simple method for targeting hydrogen networks with purification unit[J]. CIESC Journal, 2016, 67(3):1008-1014.
|
[33] |
DENG C, PAN H M, LI Y T, et al. Comparative analysis of different scenarios for the synthesis of refinery network[J]. Appl. Therm. Eng., 2014, 70(2):1162-1179.
|
[34] |
MAO J B, SHEN R J, WANG Y J, et al. An integration method for the refinery hydrogen network with coupling sink and source[J]. Int. J. Hydrogen Energy, 2015, 40:8989-9005.
|