[1] |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid:a battery of choices[J]. Science, 2011, 334(6058):928-935.
|
[2] |
张利锋, 杜素青, 刘毅, 等. 氰酸盐离子液体在石墨烯基超级电容器中的应用[J]. 化工学报, 2016, 67(12):5276-5282. ZHANG L F, DU S Q, LIU Y, et al. Applications of cyanate ionic liquids in graphene-based supercapacitor[J]. CIESC Journal, 2016, 67(12):5276-5282.
|
[3] |
GAO X P, YANG H X. Multi-electron reaction materials for high energy density batteries[J]. Energy and Environmental Science, 2010, 3(2):174-189.
|
[4] |
KANG B, CEDER G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235):190-193.
|
[5] |
BEGUIN F, FRACKOWIAK E. Supercapacitors:materials, systems and applications[J]. Journal of Solid State Electrochemistry, 2015, 19(4):1253.
|
[6] |
LV Q, WANG S, SUN H, et al. Solid-state thin-film supercapacitors with ultrafast charge/discharge based on N-doped-carbon-tubes/Au-nanoparticles-doped-MnO2 nanocomposites[J]. Nano Letters, 2015, 16(1):40.
|
[7] |
LUO X, CHUNG D D L. Carbon-fiber/polymer-matrix composites as capacitors[J]. Composites Science and Technology, 2001, 61(6):885-888.
|
[8] |
GIBSON R F. A review of recent research on mechanics of multifunctional composite materials and structures[J]. Composite Structures, 2010, 92(12):2793-2810.
|
[9] |
JAVAID A, HO K, BISMARCK A, et al. Carbon fibre-reinforced poly (ethylene glycol) diglycidylether based multifunctional structural supercapacitor composites for electrical energy storage applications[J]. Journal of Composite Materials, 2016, 50(16):2155-2163.
|
[10] |
YAN J, WANG Q, WEI T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, 4(4):1300816.
|
[11] |
WESTOVER A S, BAER B B, BELLO B H, et al. Multifunctional high strength and high energy epoxy composite structural supercapacitors with wet-dry operational stability[J]. Journal of Materials Chemistry A, 2015, 3(40):20097-20102.
|
[12] |
SHIRSHOVA N, QIAN H, STEINKE J H, et al. Multifunctional structural energy storage composite supercapacitors[J]. Faraday Discuss, 2014, 172:81-103.
|
[13] |
ZHAI Y, DOU Y, ZHAO D, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials, 2011, 23(42):4828-4850.
|
[14] |
RAHMAN M A, WANG X, WEN C. High energy density metal-air batteries:a review[J]. Journal of the Electrochemical Society, 2013, 160(10):A1759-A1771.
|
[15] |
RAYMUNDO-PINERO E, KIERZEK K, MACHNIKOWSKI J, et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes[J]. Carbon, 2006, 44(12):2498-2507.
|
[16] |
BARBIERI O, HAHN M, HERZOG A, et al. Capacitance limits of high surface area activated carbons for double layer capacitors[J]. Carbon, 2005, 43(6):1303-1310.
|
[17] |
朱红艳, 赵建国, 庞明俊, 等. 石墨烯/δ-MnO2复合材料的制备及其超级电容器性能[J]. 化工学报, 2017, 68(12):4824-4832. ZHU H Y, ZHAO J G, PANG M J, et al. Preparation of graphene/δ-MnO2 composites and supercapacitor performance[J]. CIESC Journal, 2017, 68(12):4824-4832.
|
[18] |
刘春玲, 文越华, 程杰, 等. 酚醛基活性炭纤维孔结构及其电化学性能研究[J]. 物理化学学报, 2005, 21(7):786-791. LIU C L, WEN Y H, CHEN G J, et al. Influence of pore structure of phenolic resin based activated carbon fibers on the electrochemical performance of electrical double-layer capacitors[J]. Acta Physico-Chimica Sinica, 2005, 21(7):786-791.
|
[19] |
刘凤丹, 王成扬, 杜嬛, 等. 苎麻基活性炭纤维超级电容器材料的制备[J]. 电源技术, 2009, 33(12):1086-1089. LIU F D, WANG C Y, DU H, et al, Preparation of ramie-based activated carbon fiber and its application in supercapacitors[J]. Chinese Journal of Power Sources, 2009, 33(12):1086-1089.
|
[20] |
薛荣, 阎景旺, 田颖, 等. 酚醛基活性碳纤维双电层电化学电容器的研究[J]. 电化学, 2011, 17(1):57-62. XUE R, YAN J W, TIAN Y, et al. Electrochemical double-layer capacitors using phenolic resin-based carbon fibers[J]. Electrochemistry, 2011, 17(1):57-62.
|
[21] |
HUANG Y, LIANG J, CHEN Y. An overview of the applications of graphene-based materials in supercapacitors[J]. Small, 2012, 8(12):1805-1834.
|
[22] |
何大方, 吴健, 刘战剑, 等. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8):2888-2894. HE D F, WU J, LIU Z J, et al. Recent advances in preparation of graphene for application[J]. CIESC Journal, 2015, 66(8):2888-2894.
|
[23] |
XIA J, CHEN F, Li J, et al. Measurement of the quantum capacitance of graphene[J]. Nature Nanotechnology, 2009, 4(8):505-509.
|
[24] |
ZHANG Y, FENG H, WU X, et al. Progress of electrochemical capacitor electrode materials:a review[J]. International Journal of Hydrogen Energy, 2009, 34(11):4889-4899.
|
[25] |
SHIRSHOVA N, BISMARCK A, CARREYETTE S, et al. Structural supercapacitor electrolytes based on bicontinuous ionic liquid-epoxy resin systems[J]. Journal of Materials Chemistry A, 2013, 1(48):15300-15309.
|
[26] |
ZHANG J, XU J, DONG Z. A structural supercapacitor based on graphene and hardened cement paste[J]. Journal of the Electrochemical Society, 2016, 163(3):E83-E87.
|
[27] |
XU J, ZHANG D. Multifunctional structural supercapacitor based on graphene and geopolymer[J]. Electrochimica Acta, 2017, 224:105-112.
|
[28] |
BALA H, DYMEK M, DRULIS H. Development of metal hydride material efficient surface in conditions of galvanostatic charge/discharge cycling[J]. Materials Chemistry & Physics, 2014, 148(3):1008-1012.
|
[29] |
LIU H, XU B, JIA M, et al. Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors[J]. Applied Surface Science, 2015, 332:40-46.
|
[30] |
SNYDER J F, CARTER R H, WETZEL E D. Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries[J]. Chemistry of Materials, 2007, 19(15):3793-3801.
|