CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1420-1428.DOI: 10.11949/j.issn.0438-1157.20181006
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Fengteng HU(),Jianlong YAO,Xiaoqing LI,Sihan LI,Xinhuan YAN()
Received:
2018-09-10
Revised:
2019-01-23
Online:
2019-04-05
Published:
2019-04-05
Contact:
Xinhuan YAN
通讯作者:
严新焕
作者简介:
<named-content content-type="corresp-name">胡凤腾</named-content>(1992—),男,硕士研究生,<email>1259896575@qq.com</email>|严新焕 (1964—),男,博士,教授,<email>xhyan@zjut.edu.cn</email>
CLC Number:
Fengteng HU, Jianlong YAO, Xiaoqing LI, Sihan LI, Xinhuan YAN. Properties of Sr modified Cu-based catalysts for hydrogenation of fructose to mannitol[J]. CIESC Journal, 2019, 70(4): 1420-1428.
胡凤腾, 姚建龙, 李小青, 李思汉, 严新焕. Sr改性Cu催化剂的果糖加氢制备甘露醇性能[J]. 化工学报, 2019, 70(4): 1420-1428.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181006
催化剂 | Cu/ %(mass) | Sr/ %(mass) | S BET ①/ (m2·g-1) | D pro ②/ nm | V pro ③/(cm3·g-1) |
---|---|---|---|---|---|
Cu/SiO2 | 9.8 | 0 | 131.2 | 16.97 | 0.51 |
0.5Sr+Cu/SiO2 | 9.6 | 0.46 | 161.0 | 16.15 | 0.71 |
1.0Sr+Cu/SiO2 | 9.8 | 0.98 | 168.4 | 16.65 | 0.71 |
1.5Sr+Cu/SiO2 | 9.5 | 1.37 | 186.1 | 15.97 | 0.74 |
2.0Sr+Cu/SiO2 | 9.8 | 1.86 | 197.8 | 15.89 | 0.70 |
3.0Sr+Cu/SiO2 | 9.7 | 2.75 | 180.9 | 16.10 | 0.75 |
Table 1 Physicochemical characterizations of catalysts
催化剂 | Cu/ %(mass) | Sr/ %(mass) | S BET ①/ (m2·g-1) | D pro ②/ nm | V pro ③/(cm3·g-1) |
---|---|---|---|---|---|
Cu/SiO2 | 9.8 | 0 | 131.2 | 16.97 | 0.51 |
0.5Sr+Cu/SiO2 | 9.6 | 0.46 | 161.0 | 16.15 | 0.71 |
1.0Sr+Cu/SiO2 | 9.8 | 0.98 | 168.4 | 16.65 | 0.71 |
1.5Sr+Cu/SiO2 | 9.5 | 1.37 | 186.1 | 15.97 | 0.74 |
2.0Sr+Cu/SiO2 | 9.8 | 1.86 | 197.8 | 15.89 | 0.70 |
3.0Sr+Cu/SiO2 | 9.7 | 2.75 | 180.9 | 16.10 | 0.75 |
催化剂 | KE①/eV | AP②/eV | 2p3/2 BE③/eV | | ||
---|---|---|---|---|---|---|
Cu+ | Cu0 | Cu+ | Cu0 | |||
Cu/SiO2 | 914.2 | 918.0 | 1846.9 | 1850.7 | 932.7 | 44 |
0.5Sr+Cu/SiO2 | 914.1 | 918.0 | 1846.8 | 1850.7 | 932.7 | 51 |
1.0Sr+Cu/SiO2 | 914.1 | 918.0 | 1846.8 | 1850.7 | 932.7 | 55 |
1.5Sr+Cu/SiO2 | 914.1 | 917.7 | 1846.9 | 1850.5 | 932.8 | 57 |
2.0Sr+Cu/SiO2 | 914.2 | 917.8 | 1846.9 | 1850.5 | 932.7 | 61 |
3.0Sr+Cu/SiO2 | 914.1 | 917.8 | 1846.9 | 1850.6 | 932.8 | 48 |
Table 2 Cu species on reduced catalysts
催化剂 | KE①/eV | AP②/eV | 2p3/2 BE③/eV | | ||
---|---|---|---|---|---|---|
Cu+ | Cu0 | Cu+ | Cu0 | |||
Cu/SiO2 | 914.2 | 918.0 | 1846.9 | 1850.7 | 932.7 | 44 |
0.5Sr+Cu/SiO2 | 914.1 | 918.0 | 1846.8 | 1850.7 | 932.7 | 51 |
1.0Sr+Cu/SiO2 | 914.1 | 918.0 | 1846.8 | 1850.7 | 932.7 | 55 |
1.5Sr+Cu/SiO2 | 914.1 | 917.7 | 1846.9 | 1850.5 | 932.8 | 57 |
2.0Sr+Cu/SiO2 | 914.2 | 917.8 | 1846.9 | 1850.5 | 932.7 | 61 |
3.0Sr+Cu/SiO2 | 914.1 | 917.8 | 1846.9 | 1850.6 | 932.8 | 48 |
催化剂 | Cu/Sr比例 | 果糖转化率/% | 甘露醇选择性/% |
---|---|---|---|
Cu/SiO2 | — | 60 | 64 |
0.5Sr+Cu/SiO2 | 29:1 | 85 | 69 |
1.0Sr+Cu/SiO2 | 14:1 | 96 | 71 |
1.5Sr+Cu/SiO2 | 10:1 | 97 | 75 |
2.0Sr+Cu/SiO2 | 7:1 | 99 | 79 |
3.0Sr+Cu/SiO2 | 5:1 | 89 | 73 |
SrCO3/SiO2 | — | — | — |
Table 3 Catalytic performance test results
催化剂 | Cu/Sr比例 | 果糖转化率/% | 甘露醇选择性/% |
---|---|---|---|
Cu/SiO2 | — | 60 | 64 |
0.5Sr+Cu/SiO2 | 29:1 | 85 | 69 |
1.0Sr+Cu/SiO2 | 14:1 | 96 | 71 |
1.5Sr+Cu/SiO2 | 10:1 | 97 | 75 |
2.0Sr+Cu/SiO2 | 7:1 | 99 | 79 |
3.0Sr+Cu/SiO2 | 5:1 | 89 | 73 |
SrCO3/SiO2 | — | — | — |
1 | Castoldi M C M , Câmara L D T , Aranda D A G . Kinetic modeling of sucrose hydrogenation in the production of sorbitol and mannitol with ruthenium and nickel-Raney catalysts[J]. Reaction Kinetics & Catalysis Letters, 2009, 98(1): 83-89. |
2 | 刘维, 张群峰, 李小年 . 钼改性雷尼镍催化剂的葡萄糖加氢性能[J]. 工业催化, 2010, 18(11): 36-40. |
Liu W , Zhang Q F , Li X N . Glucose hydrogenation performance of molybdenum modified Raney nickel catalyst [J]. Industrial Catalysis, 2010, 18(11): 36-40. | |
3 | Heinen A W , Papadogianakis G , Sheldon R A , et al . Factors effecting the hydrogenation of fructose with a water soluble Ru-TPPTS complex. A comparison between homogeneous and heterogeneous catalysis[J]. Journal of Molecular Catalysis A Chemical, 1999, 142(1): 17-26. |
4 | Heinen A W , Peters J A , Van B H . Hydrogenation of fructose on Ru/C catalysts [J]. Carbohydrate Research, 2000, 328(4): 449-457. |
5 | 胡明进, 朱年磊 . 甘露醇合成及分离研究进展[J]. 山东化工, 2008, 37(2): 16-18. |
Hu M J , Zhu N L . Progress in synthesis and separation of mannitol[J]. Shandong Chemical Industry, 2008, 37(2): 16-18. | |
6 | Zhang X , Wilson K , Lee A F . Heterogeneously catalyzed hydrothermal processing of C5—C6 sugars[J]. Chemical Reviews, 2016, 116(19): 12328-12368. |
7 | Ahmed M J , Kadhum A A H . Hydrogenation of D-fructose over activated charcoal supported platinum catalyst[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(1): 114-119. |
8 | Zhang J , Wu S , Liu Y , et al . Hydrogenation of fructose over magnetic catalyst derived from hydrotalcite precursor[J]. Chemical Engineering Science, 2013, 99(32): 171-176. |
9 | Kuusisto J , Mikkola J P , Casal P P , et al . Kinetics of the catalytic hydrogenation of D -fructose over a CuO-ZnO catalyst[J]. Chemical Engineering Journal, 2005, 115(1/2): 93-102. |
10 | Zelin J , Meyer C I , Regenhardt S A , et al . Selective liquid-phase hydrogenation of fructose to D-mannitol over copper-supported metallic nanoparticles[J].Chemical Engineering Journal, 2017, 319: 48-56. |
11 | 胡菊, 潘亚林, 黎汉生, 等 . 铈改性甲醇合成铜基催化剂的制备及其性能[J]. 化工学报, 2014, 65(7): 2770-2775. |
Hu J , Pan Y L , Li H S , et al . Preparation and properties of copper-based catalysts for the synthesis of hydrazine-modified methanol[J]. CIESC Journal, 2014, 65(7): 2770-2775. | |
12 | Hegedüs M , Göbölös S , Margitfalvi J L . Stereoselective hydrogenation of D-fructose to D-mannitol on skeletal and supported copper-containing catalysts[J]. Studies in Surface Science & Catalysis, 1993, 78: 187-194. |
13 | Toukoniitty B , Kuusisto J , Mikkola J P , et al . Effect of ultrasound on catalytic hydrogenation of D-fructose to D-mannitol[J]. Industrial & Engineering Chemistry Research, 2005, 44(25): 9370-9375. |
14 | 林慧, 颜春荣, 徐春祥, 等 . HPLC-ELSD法同时测定食品中的10种糖和糖醇[J]. 食品科学, 2013, 34(12): 286-291. |
Lin H , Yan C R , Xu C X , et al . Simultaneous determination of ten sugars and sugar alcohols in food by HPLC-ELSD[J]. Food Science, 2013, 34(12): 286-291. | |
15 | Xie T , Xu L , Liu C , et al . Magnetic composite ZnFe2O4/SrFe12O19: preparation, characterization, and photocatalytic activity under visible light[J]. Applied Surface Science, 2013, 273(2): 684-691. |
16 | Wang Z , Brouri D , Casale S , et al . Exploration of the preparation of Cu/TiO2, catalysts by deposition-precipitation with urea for selective hydrogenation of unsaturated hydrocarbons[J]. Journal of Catalysis, 2016, 340: 95-106. |
17 | Wei X , Wang A Q , Yang X F , et al . Synthesis of Pt-Cu/SiO2 catalysts with different structures and their application in hydrodechlorination of 1, 2-dichloroethane[J]. Applied Catalysis B Environmental, 2012, 121/122(10): 105-114. |
18 | Zhu Y , Zhu Y , Ding G , et al . Highly selective synthesis of ethylene glycol and ethanol via hydrogenation of dimethyl oxalate on Cu catalysts: influence of support[J]. Applied Catalysis A General, 2013, 468(12): 296-304. |
19 | Zhao Y , Zhang Y , Wang Y , et al . Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation[J]. Applied Catalysis A General, 2017, 539: 59-69. |
20 | Zhang Y , Ye C , Guo C , et al . In2O3 -modified Cu/SiO2, as an active and stable catalyst for the hydrogenation of methyl acetate to ethanol[J]. Chinese Journal of Catalysis, 2018, 39(1): 99-108. |
21 | Ding J , Popa T , Tang J , et al . Highly selective and stable Cu/SiO2, catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol[J]. Applied Catalysis B Environmental, 2017, 209: 530-542. |
22 | Zheng X , Lin H , Zheng J , et al . Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol[J]. American Chemical Society Catalysis, 2013, 3(3): 2738-2749. |
23 | Ding T , Tian H , Liu J , et al . Highly active Cu/SiO2 catalysts for hydrogenation of diethyl malonate to 1, 3-propanediol[J]. Chinese Journal of Catalysis, 2016, 37(4): 484-493. |
24 | Baidya T , Vegten N V , Verel R , et al . SrO-Al2O3 mixed oxides: a promising class of catalysts for oxidative coupling of methane[J]. Journal of Catalysis, 2011, 281(2): 241-253. |
25 | Kobayashi Y , Omata K , Yamada M . Screening of additives to a Co/SrCO3 catalyst by artificial neural network for preferential oxidation of Co in excess H2 [J]. Ind. Eng. Chem. Res., 2010, 49(4): 1541-1549. |
26 | Mierczynski P , Chalupka K A , Maniukiewicz W , et al . SrAl2O4, spinel phase as active phase of transesterification of rapeseed oil[J]. Applied Catalysis B Environmental, 2015, 164: 176-183. |
27 | Gawande M B , Goswami A , Felpin F , et al . Cu and Cu-based nanoparticles: synthesis and applications in catalysis[J]. Chemical Reviews, 2016, 116(6): 3722. |
28 | Wang B , Cui Y , Chao W , et al . Role of copper content and calcination temperature in the structural evolution and catalytic performance of Cu/P25 catalysts in the selective hydrogenation of dimethyl oxalate[J]. Applied Catalysis A General, 2016, 509: 66-74. |
29 | Chen L F , Guo P J , Qiao M H , et al . Cu/SiO2 catalysts prepared by the ammonia-evaporation method: texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2008, 257(1): 172-180. |
30 | Raytchev P D , Bendjeriou A , Dutasta J P , et al . A new step towards solid base catalysis: azidoproazaphosphatranes immobilized in nanopores of mesoporous silica[J]. Advanced Synthesis & Catalysis, 2011, 353(11/12): 2067-2077. |
31 | Hattori H . Heterogeneous basic catalysis [J]. Chemical Reviews, 1995, 95(3): 537-558. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[6] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[7] | Erqi WANG, Shuzhou PENG, Zhen YANG, Yuanyuan DUAN. Evaluation of vapor-liquid equilibrium models for mixtures containing HFOs [J]. CIESC Journal, 2023, 74(8): 3216-3225. |
[8] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[9] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[10] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[11] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[12] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[13] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[14] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[15] | Lixiang ZHU, Moye LUO, Xiaodong ZHANG, Tao LONG, Ran YU. Application of quinone profile method to indicate structure and activity of functional microbial community in trichloroethylene-contaminated soil [J]. CIESC Journal, 2023, 74(6): 2647-2654. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||