CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 556-563.DOI: 10.11949/j.issn.0438-1157.20181370
• Process system engineering • Previous Articles Next Articles
Peng MU(),Xiangbai GU,Qunxiong ZHU()
Received:
2018-11-18
Revised:
2018-12-11
Online:
2019-02-05
Published:
2019-02-05
Contact:
Qunxiong ZHU
通讯作者:
朱群雄
作者简介:
<named-content content-type="corresp-name">牟鹏</named-content>(1991—),男,博士研究生,<email>aileengujy@126.com</email>|朱群雄(1960—),男,博士,教授,<email>zhuqx@mail.buct.edu.cn</email>
基金资助:
CLC Number:
Peng MU, Xiangbai GU, Qunxiong ZHU. Modeling and optimization of ethylene cracking feedstock scheduling based on P-graph[J]. CIESC Journal, 2019, 70(2): 556-563.
牟鹏, 顾祥柏, 朱群雄. 基于P-graph的乙烯裂解原料调度建模与优化[J]. 化工学报, 2019, 70(2): 556-563.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181370
编号 | 工厂 | 产量/(kt/a) | 裂解炉类型 |
---|---|---|---|
1 | 独山子 | 1308 | 林德技术裂解炉 |
2 | 大庆 | 1108 | 192U裂解炉 |
3 | 吉林 | 807 | 林德技术裂解炉 |
4 | 兰州 | 517 | SC-1裂解炉 |
5 | 抚顺 | 852 | USC型管式裂解炉 |
6 | 辽宁 | 156 | GK裂解炉 |
7 | 四川 | 840 | F1110-F1170裂解炉 |
8 | 燕山 | 696 | SRT—IV型裂解炉 |
9 | 东方 | 150 | — |
10 | 天津 | 178 | CBL裂解炉 |
11 | 天津赛科 | 966 | — |
12 | 中原 | 166 | CBL裂解炉 |
13 | 武汉 | 729 | CBL裂解炉 |
14 | 茂名 | 1130 | SL-Ⅱ型裂解炉 |
15 | 广州 | 221 | — |
16 | 齐鲁 | 871 | CBL裂解炉 |
17 | 杨子 | 749 | GK-6裂解炉 |
18 | BASF-YPC | 423 | — |
19 | 上海 | 826 | SL-2裂解炉 |
20 | 上海赛科 | 1268 | — |
21 | 镇海 | 1126 | CBL裂解炉 |
22 | 福建-REP | 1101 | — |
23 | 盘锦 | 630 | USC 176U型管式裂解炉 |
24 | 惠州石化 | 950 | — |
Table 1 Introduction of main ethylene plants in China
编号 | 工厂 | 产量/(kt/a) | 裂解炉类型 |
---|---|---|---|
1 | 独山子 | 1308 | 林德技术裂解炉 |
2 | 大庆 | 1108 | 192U裂解炉 |
3 | 吉林 | 807 | 林德技术裂解炉 |
4 | 兰州 | 517 | SC-1裂解炉 |
5 | 抚顺 | 852 | USC型管式裂解炉 |
6 | 辽宁 | 156 | GK裂解炉 |
7 | 四川 | 840 | F1110-F1170裂解炉 |
8 | 燕山 | 696 | SRT—IV型裂解炉 |
9 | 东方 | 150 | — |
10 | 天津 | 178 | CBL裂解炉 |
11 | 天津赛科 | 966 | — |
12 | 中原 | 166 | CBL裂解炉 |
13 | 武汉 | 729 | CBL裂解炉 |
14 | 茂名 | 1130 | SL-Ⅱ型裂解炉 |
15 | 广州 | 221 | — |
16 | 齐鲁 | 871 | CBL裂解炉 |
17 | 杨子 | 749 | GK-6裂解炉 |
18 | BASF-YPC | 423 | — |
19 | 上海 | 826 | SL-2裂解炉 |
20 | 上海赛科 | 1268 | — |
21 | 镇海 | 1126 | CBL裂解炉 |
22 | 福建-REP | 1101 | — |
23 | 盘锦 | 630 | USC 176U型管式裂解炉 |
24 | 惠州石化 | 950 | — |
工厂和原料 | 10月 | 11月 | 12月 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
未优化前 | MINLP | SGBP最优 | 未优化前 | MINLP | SGBP最优 | 未优化前 | MINLP | SGBP最优 | ||
工厂1(696 kt/a,SRT—IV裂解炉) | 原料1/t | 16916 | 0 | 0 | 14414 | 17297 | 17297 | 17345 | 0 | 0 |
原料2/t | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
原料3/t | 120641 | 144769 | 144769 | 161343 | 47768 | 47768 | 142594 | 171113 | 171113 | |
原料4/t | 50620 | 60744 | 60744 | 29572 | 35486 | 35486 | 39865 | 47838 | 47838 | |
能耗/GJ | 14915967 | 1772060 | 1772060 | 1634138 | 611868 | 611868 | 1634138 | 611868 | 611868 | |
工厂2(1126 kt/a,CBL裂解炉裂解炉) | 原料1/t | 89209 | 106125 | 106125 | 85620 | 82737 | 82737 | 90224 | 107569 | 107569 |
原料2/t | 55420 | 55420 | 55420 | 46383 | 35980 | 35980 | 52014 | 62417 | 62417 | |
原料3/t | 79907 | 55778.8 | 55779 | 75379 | 90456 | 90456 | 77224 | 92669 | 92669 | |
原料4/t | 55820 | 5160 | 5160 | 65564 | 78677 | 78677 | 67679 | 81215 | 81215 | |
能耗/GJ | 1996976 | 1719402 | 1719402 | 1946995 | 1992970 | 1992970 | 1946995 | 1992970 | 1992970 | |
两工厂总计(1818 kt/a) | 原料1/t | 106125 | 106125 | 106125 | 100034 | 100034 | 100034 | 107569 | 107569 | 107569 |
原料2/t | 55420 | 55420 | 55420 | 46383 | 35980 | 35980 | 52014 | 62417 | 62417 | |
原料3/t | 200548 | 200548 | 200548 | 236722 | 138224 | 138224 | 219818 | 263782 | 263782 | |
原料4/t | 106440 | 65904 | 65904 | 95136 | 114163 | 114163 | 107544 | 129053 | 129053 | |
能耗/GJ | 16912943 | 3491462 | 3491462 | 3581133 | 2604838 | 2604838 | 3581133 | 2604838 | 2604838 |
Table 2 Different optimization results of SGBP and MINLP
工厂和原料 | 10月 | 11月 | 12月 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
未优化前 | MINLP | SGBP最优 | 未优化前 | MINLP | SGBP最优 | 未优化前 | MINLP | SGBP最优 | ||
工厂1(696 kt/a,SRT—IV裂解炉) | 原料1/t | 16916 | 0 | 0 | 14414 | 17297 | 17297 | 17345 | 0 | 0 |
原料2/t | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
原料3/t | 120641 | 144769 | 144769 | 161343 | 47768 | 47768 | 142594 | 171113 | 171113 | |
原料4/t | 50620 | 60744 | 60744 | 29572 | 35486 | 35486 | 39865 | 47838 | 47838 | |
能耗/GJ | 14915967 | 1772060 | 1772060 | 1634138 | 611868 | 611868 | 1634138 | 611868 | 611868 | |
工厂2(1126 kt/a,CBL裂解炉裂解炉) | 原料1/t | 89209 | 106125 | 106125 | 85620 | 82737 | 82737 | 90224 | 107569 | 107569 |
原料2/t | 55420 | 55420 | 55420 | 46383 | 35980 | 35980 | 52014 | 62417 | 62417 | |
原料3/t | 79907 | 55778.8 | 55779 | 75379 | 90456 | 90456 | 77224 | 92669 | 92669 | |
原料4/t | 55820 | 5160 | 5160 | 65564 | 78677 | 78677 | 67679 | 81215 | 81215 | |
能耗/GJ | 1996976 | 1719402 | 1719402 | 1946995 | 1992970 | 1992970 | 1946995 | 1992970 | 1992970 | |
两工厂总计(1818 kt/a) | 原料1/t | 106125 | 106125 | 106125 | 100034 | 100034 | 100034 | 107569 | 107569 | 107569 |
原料2/t | 55420 | 55420 | 55420 | 46383 | 35980 | 35980 | 52014 | 62417 | 62417 | |
原料3/t | 200548 | 200548 | 200548 | 236722 | 138224 | 138224 | 219818 | 263782 | 263782 | |
原料4/t | 106440 | 65904 | 65904 | 95136 | 114163 | 114163 | 107544 | 129053 | 129053 | |
能耗/GJ | 16912943 | 3491462 | 3491462 | 3581133 | 2604838 | 2604838 | 3581133 | 2604838 | 2604838 |
算法 | 工厂1 | 工厂2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
原料1//t | 原料2/t | 原料3/t | 原料4/t | 能耗/GJ | 原料1/t | 原料2/t | 原料3/t | 原料4/t | 能耗/GJ | |
未优化前 | 48675 | 0 | 424578 | 120057 | 18184243 | 265053 | 153817 | 232510 | 189063 | 5890966 |
MINLP | 17297 | 0 | 363650 | 144068 | 2995796 | 296431 | 153817 | 238904 | 165052 | 5705342 |
SGBP | 17297 | 0 | 363650 | 144068 | 2995796 | 296431 | 153817 | 238904 | 165052 | 5705342 |
Table 3 Different optimization monthly total results of SGBP and MINLP
算法 | 工厂1 | 工厂2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
原料1//t | 原料2/t | 原料3/t | 原料4/t | 能耗/GJ | 原料1/t | 原料2/t | 原料3/t | 原料4/t | 能耗/GJ | |
未优化前 | 48675 | 0 | 424578 | 120057 | 18184243 | 265053 | 153817 | 232510 | 189063 | 5890966 |
MINLP | 17297 | 0 | 363650 | 144068 | 2995796 | 296431 | 153817 | 238904 | 165052 | 5705342 |
SGBP | 17297 | 0 | 363650 | 144068 | 2995796 | 296431 | 153817 | 238904 | 165052 | 5705342 |
编号 | 单位产量能耗/(GJ/t) | 节能效果/% | 编号 | 单位产量能耗/(GJ/t) | 节能效果/% | 编号 | 单位产量能耗/(GJ/t) | 节能效果/% |
---|---|---|---|---|---|---|---|---|
1 | 21.13627 | 5.334107 | 13 | 21.18763 | 5.104044 | 25 | 21.20864 | 5.009969 |
2 | 21.13855 | 5.323861 | 14 | 21.19096 | 5.089141 | 26 | 21.20926 | 5.007175 |
3 | 21.13959 | 5.319204 | 15 | 21.19491 | 5.071444 | 27 | 21.21176 | 4.995998 |
4 | 21.14188 | 5.308958 | 16 | 21.20115 | 5.043501 | 28 | 21.213 | 4.990409 |
5 | 21.1554 | 5.248415 | 17 | 21.20302 | 5.035118 | 29 | 21.21425 | 4.984821 |
6 | 21.16788 | 5.19253 | 18 | 21.20344 | 5.033255 | 30 | 21.23068 | 4.911238 |
7 | 21.1712 | 5.177627 | 19 | 21.20448 | 5.028598 | 31 | 21.23401 | 4.896335 |
8 | 21.17474 | 5.161792 | 20 | 21.20552 | 5.023941 | 32 | 21.23692 | 4.883295 |
9 | 21.17807 | 5.146889 | 21 | 21.20614 | 5.021146 | 33 | 21.2442 | 4.850695 |
10 | 21.18368 | 5.121741 | 22 | 21.20635 | 5.020215 | 34 | 21.24877 | 4.830203 |
11 | 21.18389 | 5.120809 | 23 | 21.20676 | 5.018352 | 35 | 21.25064 | 4.82182 |
12 | 21.16788 | 5.19253 | 24 | 21.20843 | 5.010901 | 36 | 21.25356 | 4.80878 |
Table 4 Near-best results
编号 | 单位产量能耗/(GJ/t) | 节能效果/% | 编号 | 单位产量能耗/(GJ/t) | 节能效果/% | 编号 | 单位产量能耗/(GJ/t) | 节能效果/% |
---|---|---|---|---|---|---|---|---|
1 | 21.13627 | 5.334107 | 13 | 21.18763 | 5.104044 | 25 | 21.20864 | 5.009969 |
2 | 21.13855 | 5.323861 | 14 | 21.19096 | 5.089141 | 26 | 21.20926 | 5.007175 |
3 | 21.13959 | 5.319204 | 15 | 21.19491 | 5.071444 | 27 | 21.21176 | 4.995998 |
4 | 21.14188 | 5.308958 | 16 | 21.20115 | 5.043501 | 28 | 21.213 | 4.990409 |
5 | 21.1554 | 5.248415 | 17 | 21.20302 | 5.035118 | 29 | 21.21425 | 4.984821 |
6 | 21.16788 | 5.19253 | 18 | 21.20344 | 5.033255 | 30 | 21.23068 | 4.911238 |
7 | 21.1712 | 5.177627 | 19 | 21.20448 | 5.028598 | 31 | 21.23401 | 4.896335 |
8 | 21.17474 | 5.161792 | 20 | 21.20552 | 5.023941 | 32 | 21.23692 | 4.883295 |
9 | 21.17807 | 5.146889 | 21 | 21.20614 | 5.021146 | 33 | 21.2442 | 4.850695 |
10 | 21.18368 | 5.121741 | 22 | 21.20635 | 5.020215 | 34 | 21.24877 | 4.830203 |
11 | 21.18389 | 5.120809 | 23 | 21.20676 | 5.018352 | 35 | 21.25064 | 4.82182 |
12 | 21.16788 | 5.19253 | 24 | 21.20843 | 5.010901 | 36 | 21.25356 | 4.80878 |
1 | Sadrameli S M . Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review(Ⅰ): Thermal cracking review[J]. Fuel, 2015, 140: 102-115. |
2 | Zhang L , Liu J . Review of PetroChina s ethylene production in 2012[J]. Ethylene Industry, 2013, 25: 7-10. |
3 | 周书恒, 杜文莉 . 基于迁移学习的裂解炉产率建模[J]. 化工学报, 2014, 65(12): 4921-4928. |
Zhou S H , Du S L . Modeling of ethylene cracking furnace yields based on transfer learning[J]. CIESC Journal, 2014, 65(12): 4921-4928. | |
4 | Nakamura D . Ethylene capacity rising, margins continue to suffer[J]. Oil & Gas Journal, 2012, 100: 66-66. |
5 | Han Y M , Geng Z Q , Zhu Q X . Energy optimization and prediction of complex petrochemical industries using an improved artificial neural network approach integrating data envelopment analysis[J]. Energy Conversion and Management, 2016, 124: 73-83. |
6 | Geng Z , Yang X , Han Y , et al . Energy optimization and analysis modeling based on extreme learning machine integrated index decomposition analysis: application to complex chemical processes[J]. Energy, 2017, 120: 67-78. |
7 | Geng Z , Qin L , Han Y , et al . Energy saving and prediction modeling of petrochemical industries: a novel ELM based on FAHP[J]. Energy, 2017, 122: 350-362. |
8 | 刘时涛, 王宏刚, 钱锋, 等 . SL-Ⅱ型工业乙烯裂解炉内燃烧传热与裂解反应的耦合模拟[J]. 化工学报, 2011, 62(5): 1308-1317. |
Liu S T , Wang H G , Qian F , et al . Coupled simulation of combustion with heat transfer and cracking reaction in SL-Ⅱ industrial ethylene pyrolyzer[J]. CIESC Journal, 2011, 62(5): 1308-1317. | |
9 | Liu C , Zhang J , Xu Q , et al . Cyclic scheduling for best profitability of industrial cracking furnace system[J]. Computers & Chemical Engineering, 2011, 34: 544-554. |
10 | Zhao C , Liu C , Qiang X . Cyclic scheduling for ethylene cracking furnace system with consideration of secondary ethane cracking[J]. Ind. Eng. Chem. Res., 2010, 49: 5765-5774. |
11 | 商保鹏, 杜文莉, 金阳坤, 等 . 考虑切料过程的乙烯裂解炉炉群调度建模与优化[J]. 化工学报, 2013, 64(12): 4304-4312. |
Shang B P , Du W L , Jin Y K , et al . Modeling and optimization for ethylene cracking furnace systems scheduling with consideration of changing feedstock[J]. CIESC Journal, 2013, 64(12): 4304-4312. | |
12 | 康丽霞, 张燕蓉, 唐亚哲, 等 . 基于GPU加速求解MINLP问题的SQP并行算法[J]. 化工学报, 2012, 63(11): 3597-3601. |
Kang L X , Zhang Y R , Tang Y Z , et al . Paralleled SQP algorithm for solution of MINLP problems based on GPU acceleration[J]. CIESC Journal, 2012, 63(11): 3597-3601. | |
13 | Chen Q , Grossmann I E . Recent developments and challenges in optimization-based process synthesis[J]. Annual Review of Chemical & Biomolecular Engineering, 2017, 8: 249-249. |
14 | Tan R R , Aviso K B , Foo D C Y . P-graph and Monte Carlo simulation approach to planning carbon management networks[J]. Computers & Chemical Engineering, 2017, 106: 872-882. |
15 | 许晓慧, 宋海华, 于兰平, 等 . 加速分支定界算法在化工过程合成中的应用[J]. 计算机与应用化学, 2011, 28(4): 451-457. |
Xu X H , Song H H , Yu L P , et al . Application of accelerated branch and bound algorithm in chemical process synthesis[J]. Computer and Applied Chemistry, 2011, 28(4): 421-457. | |
16 | Díaz-Alvarado F A , Miranda-Pérez J , Grossmann I E . Search for reaction pathways with P-graphs and reaction blocks: methanation of carbon dioxide with hydrogen[J]. Journal of Mathematical Chemistry, 2017, 56: 1011-1102. |
17 | Aviso K B , Lee J Y , Dulatre J C , et al . A P-graph model for multi-period optimization of sustainable energy systems[J]. Journal of Cleaner Production, 2017, 161: 1338-1351. |
18 | Lam H L . Extended P-graph applications in supply chain and process network synthesis[J]. Current Opinion in Chemical Engineering, 2013, 2: 475-486. |
19 | Voll P , Jennings M , Hennen M , et al . The optimum is not enough: a near-optimal solution paradigm for energy systems synthesis[J]. Energy, 2015, 82: 446-456. |
20 | Tan R R , Benjamin M F D , Cayamanda C D , et al . P-graph approach to optimizing crisis operations in an industrial complex[J]. Industrial & Engineering Chemistry Research, 2015, 55: 3467-3477. |
21 | Friedler F , Tarján K , Huang Y W , et al . Graph-theoretic approach to process synthesis: axioms and theorems[J]. Chemical Engineering Science, 1992, 47: 1973-1988. |
22 | Friedler F , Tarjan K , Huang Y W , et al . Graph-theoretic approach to process synthesis: polynomial algorithm for maximal structure generation[J]. Computers & Chemical Engineering, 1993, 17: 929-942. |
23 | Strouvalis A M , Heckl I , Friedler F , et al . An accelerated branch-and-bound algorithm for assignment problems of utility systems[J]. Computers & Chemical Engineering, 2002, 26: 617-630. |
24 | 王松汉, 何细藕 . 乙烯工艺与技术[M]. 北京: 中国石化出版社, 2012. |
Wang S H , He X O . Ethylene Process and Technology[M]. China. China Petrochemical Press, 2012. | |
25 | Gnanalingam . Studies in process synthesis(Ⅰ): Branch and bound strategy with list techniques for the synthesis of separation schemes[J]. Chemical Engineering Science, 2015, 30: 963-972. |
26 | Harjunkoski I , Maravelias C T , Bongers P , et al . Scope for industrial applications of production scheduling models and solution methods[J]. Computers & Chemical Engineering, 2014, 62: 161-193. |
27 | Andrecovich M J , Westerberg A W . An MILP formulation for heat‐integrated distillation sequence synthesis[J]. AIChE Journal, 2010, 31: 1461-1474. |
28 | Wu W , Henao C A , Maravelias C T . A superstructure representation, generation, and modeling framework for chemical process synthesis[J]. AIChE Journal, 2016, 62: 3199-3214. |
29 | 曹健, 牟鹏, 耿志强, 等 . 工业系统超结构模型应用研究进展[J]. 化工学报, 2017, 68(3): 801-810. |
Cao J , Mou P , Geng Z Q , et al . Research progress and application of superstructure model for industrial systems[J]. CIESC Journal, 2017, 68(3): 801-810. | |
30 | García-Ojeda J C , Bertok B , Friedler F , et al . Building-evacuation-route planning via time-expanded process-network synthesis[J]. Fire Safety Journal, 2013, 61: 338-347. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[4] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[5] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[6] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[7] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[8] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[9] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[10] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[11] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[12] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[13] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[14] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[15] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||