CIESC Journal ›› 2018, Vol. 69 ›› Issue (1): 166-174.DOI: 10.11949/j.issn.0438-1157.20171018
Previous Articles Next Articles
LIU Zhuang1,2, WANG Wei1,2, JU Xiaojie1,2, XIE Rui1,2, CHU Liangyin1,2
Received:
2017-07-31
Revised:
2017-11-08
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171018
Supported by:
supported by the National Natural Science Foundation of China (21490582, 21506127).
刘壮1,2, 汪伟1,2, 巨晓洁1,2, 谢锐1,2, 褚良银1,2
通讯作者:
褚良银
基金资助:
国家自然科学基金项目(21490582,21506127)。
CLC Number:
LIU Zhuang, WANG Wei, JU Xiaojie, XIE Rui, CHU Liangyin. Carbon-based membranes with confinement effect for mass transport: from carbon nano-tube membranes to graphene membranes[J]. CIESC Journal, 2018, 69(1): 166-174.
刘壮, 汪伟, 巨晓洁, 谢锐, 褚良银. 具有限域传质效应的碳基分离膜——从碳纳米管膜到石墨烯膜[J]. 化工学报, 2018, 69(1): 166-174.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20171018
[1] | LIVELY R P, SHOLL D S. From water to organics in membrane separations[J]. Nature Materials, 2017, 16:276-279. |
[2] | 徐南平, 高从堦, 金万勤. 中国膜科学技术的创新进展[J]. 中国工程科学, 2014, 16(12):4-9. XU N P, GAO C J, JIN W Q. Innovations of membrane science and technology in China[J]. Engineering Science, 2014, 16(12):4-9. |
[3] | MULDER M. Basic Principles of Membrane Technology[M]. Dordrecht:Kluwer Academic Publishers, 1996. |
[4] | 时均, 袁权, 高从堦. 膜技术手册[M]. 北京:化学工业出版社, 2001. SHI J, YUAN Q, GAO C J. Handbook of Membrane Technology[M]. Beijing:Chemical Industry Press, 2001. |
[5] | SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185):301-310. |
[6] | CHAPMAN P D, OLIVERIA T, LIVINGSTON A G, et al. Membranes for the dehydration of solvents by pervaporation[J]. J. Membrane Sci., 2008, 318(1):5-37. |
[7] | WANG Y J, QIAP J, BAKER R, et al. Alkaline polymer electrolyte membranes for fuel cell applications[J]. Chem. Soc. Rev., 2013, 42(13):5768-5787. |
[8] | MOHAMMAD A W, TEOW Y H, ANG W L, et al. Nanofiltration membranes review:recent advances and future prospects[J]. Desalination, 2015, 356:226-254. |
[9] | KIM S, LEE Y M. Rigid and microporous polymers for gas separation membranes[J]. Prog. Polym. Sci., 2015, 43:1-32. |
[10] | RAN J, WU L, HE Y, et al. Ion exchange membranes:new developments and applications[J]. J. Membrane Sci., 2017, 522:267-291. |
[11] | BAKER R W. Membrane Technology and Applications[M]. California:John Wiley & Sons, 2004. |
[12] | 朱育丹, 陆小华, 谢文龙, 等. 基于限域传质机制的膜过程定量描述的研究进展[J]. 科学通报, 2017, 62:223-232. ZHU Y D, LU X H, XIE W L, et al. The progress of quantitatively description of membrane process based on the mechanism of nanoconfined mass transfer[J]. Chin. Sci. Bull., 2017, 62:223-232. |
[13] | DAS R, ALI M E, HAMID S B A, et al. Carbon nanotube membranes for water purification:a bright future in water desalination[J]. Desalination, 2014, 336:97-109. |
[14] | LIU G, JIN W, XU N. Graphene-based membranes[J]. Chem. Soc. Rev., 2015, 44(15):5016-5030. |
[15] | SUN P, WANG K, ZHU H. Recent developments in graphene-based membranes:structure, mass-transport mechanism and potential applications[J]. Adv. Mater., 2016, 28(12):2287-2310. |
[16] | GOH K, KARAHAN H E, WEI L, et al. Carbon nanomaterials for advancing separation membranes:a strategic perspective[J]. Carbon, 2016, 109:694-710. |
[17] | LIU Z, WANG W, JU X, et al. Graphene-based membranes for molecular and ionic separations in aqueous environments[J]. Chinese J. Chem. Eng., doi:10.1016/j.cjche.2017.05.008. |
[18] | HOLT J K, PARK H G, WANG Y, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006, 312(5776):1034-1037. |
[19] | NAIR R R, WU H A, JAYARAMP N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067):442-444. |
[20] | PARK H B, KAMCEY J, ROBESON L M, et al. Maximizing the right stuff:the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343):eaab0530. |
[21] | HUMMER G, RASAIAH J C, NOWORYTA J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860):188-190. |
[22] | BEREZHKOVSKⅡ A, HUMMER G. Single-file transport of water molecules through a carbon nanotube[J]. Phys. Rev. Lett., 2002, 89(6):064503. |
[23] | SECCHI E, MARBACH S, NIGUES A, et al. Massive radius-dependent flow slippage in carbon nanotubes[J]. Nature, 2016, 537(7619):210-213. |
[24] | KANNAM S K, TODD B D, HANSEN J S, et al. How fast does water flow in carbon nanotubes?[J]. J. Chem. Phys., 2013, 138(9):094701. |
[25] | HINDS B J, CHOPRA N, RANTELL T, et al. Aligned multiwalled carbon nanotube membranes[J]. Science, 2004, 303(5654):62-65. |
[26] | MAJUMDER M, CHOPRA N, ANDREWS R, et al. Nanoscale hydrodynamics:enhanced flow in carbon nanotubes[J]. Nature, 2005, 438(7064):44-44. |
[27] | HOLT J K, PARK H G, WANG Y S, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006, 312(5776), 1034-1037. |
[28] | WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Rev. Mater., 2016, 1:16018. |
[29] | RASHID M H O, RALPH S F. Carbon nanotube membranes:synthesis, properties, and future filtration applications[J]. Nanomaterials, 2017, 7(5):99. |
[30] | LEE J, JEONG S, LIU Z. Progress and challenges of carbon nanotube membrane in water treatment[J]. Crit. Rev. Env. Sci. Tec., 2016, 46(11/12):999-1046. |
[31] | AHN C H, BAEK Y, LEE C, et al. Carbon nanotube-based membranes:fabrication and application to desalination[J]. J. Ind. Eng. Chem., 2012, 18(5):1551-1559. |
[32] | SAUFI S M, ISMAIL A F. Fabrication of carbon membranes for gas separation-a review[J]. Carbon, 2004, 42(2):241-259. |
[33] | CORRY B. Water and ion transport through functionalised carbon nanotubes:implications for desalination technology[J]. Energ. Environ. Sci., 2011, 4(3):751-759. |
[34] | CORRY B. Designing carbon nanotube membranes for efficient water desalination[J]. J. Phys. Chem. B, 2008, 112(5):1427-1434. |
[35] | ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon:a review of graphene[J]. Chem. Rev., 2009, 110(1):132-145. |
[36] | GEIM A K. Graphene:status and prospects[J]. Science, 2009, 324(5934):1530-1534. |
[37] | BUNCH J S, VERBRIDGE S S, ALDEN J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8):2458-2462. |
[38] | DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chem. Soc. Rev., 2010, 39(1):228-240. |
[39] | COHEN-TANUGI D, GROSSMAN J C. Water desalination across nanoporous graphene[J]. Nano Letters, 2012, 12(7):3602-3608. |
[40] | SURWADE S P, SMIRNOV S N, VLASSIOUK I V, et al. Water desalination using nanoporous single-layer graphene[J]. Nature Nanotechnol., 2015, 10(5):459-464. |
[41] | 邓会, 孙鹏展, 张迎九, 等. 石墨烯材料在水处理中的应用:传质机制与吸附特性[J]. 科学通报, 2015, 60(33):3196-3209. DENG H, SUN P Z, ZHANG Y J, et al. Applications of graphene-based materials in water treatment:mass transport and pollutants adsorption properties[J]. Chinese Science Bulletin, 2015, 60(33):3196-3209. |
[42] | BOUKHVALOV D W, KATSNELSON M I, SON Y W. Origin of anomalous water permeation through graphene oxide membrane[J]. Nano Letters, 2013, 13(8):3930-3935. |
[43] | TSOU C H, AN Q F, LO S C, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration[J]. J. Membrane Sci., 2015, 477:93-100. |
[44] | GOH K, SETIAWAN L, WEI L, et al. Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process[J]. J. Membrane Sci., 2015, 474:244-253. |
[45] | SUN P, ZHU M, WANG K, et al. Selective ion penetration of graphene oxide membranes[J]. ACS Nano, 2012, 7(1):428-437. |
[46] | BREITWIESER M, BAYER T, BUCHLER A, et al. A fully spray-coated fuel cell membrane electrode assembly using aquivion ionomer with a graphene oxide/cerium oxide interlayer[J]. J. Power Sources, 2017, 351:145-150. |
[47] | KIM H W, YOON H W, YOON S M, et al. Selective gas transport through few-layered graphene and graphene oxide membranes[J]. Science, 2013, 342(6154):91-95. |
[48] | BECERRIL H A, MAO J, LIU Z, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS Nano, 2008, 2(3):463-470. |
[49] | AKBARI A, SHEATH P, MARTIN S T, et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide[J]. Nature Commun., 2016, 7:10891. |
[50] | XI Y H, HU J Q, LIU Z, et al. Graphene oxide membranes with strong stability in aqueous solutions and controllable lamellar spacing[J]. ACS Appl. Mater. Inter., 2016, 8(24):15557-15566. |
[51] | MI B. Graphene oxide membranes for ionic and molecular sieving[J]. Science, 2014, 343(6172):740-742. |
[52] | HUANG K, LIU G, LOU Y, et al. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution[J]. Angew. Chem. Int. Edit., 2014, 53(27):6929-6932. |
[53] | HUNG W S, AN Q F, DE GUZMAN M, et al. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide[J]. Carbon, 2014, 68:670-677. |
[54] | JOSHI R K, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172):752-754. |
[55] | ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotech., 2017, 12(6):546-550. |
[56] | HONG S, CONSTANS C, SURMANI MARTINS M V, et al. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity[J]. Nano Letters, 2017, 17(2):728-732. |
[57] | LIU H, WANG H, ZHANG X. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification[J]. Adv. Mater., 2015, 27(2):249-254. |
[58] | GEISE G M, PARK H B, SAGLE A C, et al. Water permeability and water/salt selectivity tradeoff in polymers for desalination[J]. J. Membrane Sci., 2011, 369(1):130-138. |
[59] | PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff:the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343):eaab0530. |
[60] | LI H, SONG Z, ZHANG X, et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation[J]. Science, 2013, 342(6154):95-98. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[4] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[5] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[6] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[7] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[8] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[9] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[10] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[11] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[12] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[13] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[14] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[15] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||