[1] |
崔晓曦, 曹会博, 孟凡会, 等. 合成气甲烷化热力学计算分析[J]. 天然气化工, 2012, 37(5):15-19. CUI X X, CAO H B, MENG F H, et al. Thermodynamic analysis for methanation of syngas[J]. Natural Gas Chemical Industry, 2012, 37(5):15-19.
|
[2] |
KOPYSCINSKI J, SCHILDHAUER T J, BIOLLAZ S M A. Production of synthetic natural gas (SNG) from coal and dry biomass-a technology review from 1950 to 2009[J]. Fuel, 2010, 89(8):1763-1783.
|
[3] |
朱瑞春, 公维恒, 范少锋.煤制天然气工艺技术研究[J]. 洁净煤技术, 2011, 17(6):81-85. ZHU R C, GONG W H, FAN S F. Research on technology of synthetic natural gas from coal[J]. Clean Coal Technology, 2011, 17(6):81-85.
|
[4] |
胡大成, 高加俭, 贾春苗. 甲烷化催化剂及反应机理的研究进展[J]. 过程工程学报, 2011, 11(5):880-893. HU D C, GAO J J, JIA C M. Research advances in methanation catalysts and their catalytic mechanisms[J]. The Chinese Journal of Process Engineering, 2011, 11(5):880-893.
|
[5] |
ROSTRUP J R, PEDERSEN K, SEHESTED J. High temperature methanation:sintering and structure sensitivity[J]. Applied Catalysis A General, 2007, 330(40):134-138.
|
[6] |
GAO J, LIU Q, GU F, et al. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Advances, 2015, 5(29):22759-22776.
|
[7] |
KAGYRMANOVA A P, ZOLOTARSKⅡ I A, SMIRNOV E I, et al. Optimum dimensions of shaped steam reforming catalyst[J]. Chemical Engineering Journal, 2007, 134(1):228-234.
|
[8] |
NGUYEN T T M, WISSING L, SKIØTH R M S. High temperature methanation:catalyst consideration[J]. Catalysis Today, 2013, 215:233-238.
|
[9] |
樊蓉蓉, 甘霖, 朱炳辰. 异形多通孔催化剂工程研究(Ⅰ):12孔及24孔当量直径测定[J]. 化工学报, 2001, 52(2):170-172. FAN R R, GAN L, ZHU B C. Engineering research of irregular shape catalyst with through-hole(Ⅰ):Determination of equivalent diameters of pellets with 12 and 24 through-holes[J]. Journal of Chemical Industry and Engineering (China), 2001, 52(2):170-172.
|
[10] |
MARIANI N J, KEEGAN S D, MARINEZ O M, et al. A onedimensional equivalent model to evaluate overall reaction rates in catalytic pellets[J]. Chemical Engineering Research & Design, 2003, 81(8):1033-1042.
|
[11] |
PEDEMARA M N, PINA J, BORIO D O, et al. Use of a heterogeneous two-dimensional model to improve the primary steam reformer performance[J]. Chemical Engineering Journal, 2003, 94(1):29-40.
|
[12] |
FRIAS F A, TUDELA I, LOUISNARD O, et al. Optimized design of an electrochemical filter-press reactor using CFD methods[J]. Chemical Engineering Journal, 2011, 169:270-281.
|
[13] |
EKAMBARA K, NANDAKUMAR K, JOSHI J B. CFD simulation of bubble column reactor using population balance[J]. Industrial & Engineering Chemistry Research, 2008, 47(21):8505-8516.
|
[14] |
NIJEMEISLAND M, DIXON A G. Comparison of CFD simulations to experiment for convective heat transfer in a gas-solid fixed bed[J]. Chemical Engineering Journal, 2001, 82:231-246.
|
[15] |
BEHNAM M, DIXON A G, NIJEMEISLAND M, et al. Catalyst deactivation in 3D CFD resolved particle simulations of propane dehydrogenation[J]. Industrial Engineering Chemistry Research, 2010, 49:10641-10650.
|
[16] |
NIJEMEISLAND M, DIXON A G, STITT E H.Catalyst design by CFD for heat transfer and reaction in steam reforming[J]. Chemical Engineering Science, 2004, 59(2):5185-5191.
|
[17] |
TASKIN M E, DIXON A G, NIJEMEISLAND M, et al. CFD study of the influence of catalyst particle design on steam reforming reaction heat effects in narrow packed tubes[J]. Industrial & Engineering Chemistry Research, 2008, 47(16):5966-5975.
|
[18] |
房鼎业. 扩散过程对气-固相催化反应速率的影响[J]. 化肥设计, 1981, (1):15-26. FANG D Y. Effect of diffusion process on gas-solid catalytic reaction rate[J]. Chemical Fertilizer Design, 1981, (1):15-26.
|
[19] |
LI H, WANG J, CHEN C, et al. Effects of macro-pores on reducing internal diffusion limitations in Fischer-Tropsch synthesis using a hierarchical cobalt catalyst[J]. RSC Advances, 2017, 7(16):9436-9445.
|
[20] |
TASKIN ME, TROUPEL A, DIXON A G, et al. Flow, transport, and reaction interactions for cylindrical particles with strongly endothermic reactions[J]. Industrial & Engineering Chemistry Research, 2010, 49(19):9026-9037.
|
[21] |
NASERI A T, PEPPLEY B A, PHARAOH J G. Computational analysis of the reacting flow in a microstructured reformer using a multiscale approach[J]. AIChE Journal, 2014, 60(6):2263-2274.
|
[22] |
KOLACZKOWSKI S T, CHAO R, AWDRY S, et al. Application of a CFD code (Fluent) to formulate models of catalytic gas phase reactions in porous catalyst pellets[J]. Chemical Engineering Research & Design, 2007, 85(11):1539-1552.
|
[23] |
TASKIN M E, DIXON A G, STITT E H, et al. Approximation of reaction heat effects in cylindrical catalyst particles with internal voids using CFD[J]. Chemical Engineering Faculty Publications, 2007, 5(1):56-72.
|
[24] |
DIXON A G, NIJEMEISLAND M, STITT E H. Systematic mesh development for 3D CFD simulation of fixed beds:single sphere study[J]. Computers & Chemical Engineering, 2011, 35(7):1171-1185.
|
[25] |
DIXON A G, NIJEMEISLAND M, STITT E H. Systematic mesh development for 3D CFD simulation of fixed beds:contact point study[J]. Computers & Chemical Engineering, 2013, 48:135-153.
|
[26] |
FOGLER H S. Elements of Chemical Reaction Engineering.[M]. 4th ed. New York:Pearson Education, 2006:813-827.
|
[27] |
KOPYSCINSKI J, SCHILDHAUER T J, VOGEL F, et al. Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation[J]. Journal of Catalysis, 2010, 271(2):262-279.
|
[28] |
张继炎, 霍夫曼H. 在内循环式无梯度反应器中一氧化碳甲烷化反应动力学的研究[J]. 化工学报, 1986, 37(2):252-257. ZHANG J Y, HUFFMAN H. A kinetic study of carbon monoxide methanation in a gradientless reactor with internal recycle[J]. Journal of Chemical Industry and Engineering (China), 1986, 37(2):252-257.
|
[29] |
TASKIN M E, DIXON A G, STITT E H. CFD study of fluid flow and heat transfer in a fixed bed of cylinders[J]. Numerical Heat Transfer Part A:Applications, 2007, 52(3):203-218.
|
[30] |
DIXON A G, BOUDREAU J, ROCHELEAU A, et al. Flow, transport, and reaction interactions in shaped cylindrical particles for steam methane reforming[J]. Industrial & Engineering Chemistry Research, 2012, 51(49):15839-15854.
|