[1] |
ZHU J F, SHU Y D, ZHAO J S, et al. A dynamic alarm management strategy for chemical process transitions[J]. Journal of Loss Prevention in the Process Industries, 2014, 30(1):207-218.
|
[2] |
XU J, WANG J, IZADI I, et al. Performance assessment and design for univariate alarm systems based on FAR, MAR and AAD[J]. IEEE Transactions on Automation Science and Engineering, 2012, 9(2):296-307.
|
[3] |
NAGHOOSI E, IZADI I, CHEN T. A study on the relation between alarm deadbands and alarm limits[C]//American Control Conference. San Francisco, California, USA, 2011:3627-3632.
|
[4] |
URBAN P, LANDRYOVA L. Process knowledge building an optimized alarm system[C]//International Carpathian Control Conference. Ostrava, 2015:563-566.
|
[5] |
ADHITYA A, CHENG S F, LEE Z, et al. Quantifying the effectiveness of an alarm management system through human factors studies[J]. Computers and Chemical Engineering, 2014, 67(11):1-12.
|
[6] |
WICKENS C D, HOLLANDS J G, BANBURY S, et al. Engineering Psychology & Human:Performance[M]. Schweiz:Pearson Education, 2012.
|
[7] |
刘恒, 刘振娟, 李宏光. 基于数据驱动的化工过程参数报警阈值优化[J]. 化工学报, 2012, 63(9):2733-2738. LIU H, LIU Z J, LI H G. A data-driven approach to chemical process alarm threshold optimization[J]. CIESC Journal, 2012, 63(9):2733-2738.
|
[8] |
LI J, WEI J M, YU T, et al. Feature selection based on Bayes minimum error probability[C]//International Conference on Fuzzy Systems and Knowledge Discovery. IEEE, 2012:706-710.
|
[9] |
FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8):861-874.
|
[10] |
臧灏, 李宏光, 杨帆, 等. 流程工业报警系统传统评估方法分析及改进[J]. 化工学报, 2014, 65(11):4459-4464. ZANG H, LI H G, YANG F, et al. Analysis and improvement of process industrial alarm systems traditional assessment methods[J]. CIESC Journal, 2014, 65(11):4459-4464.
|
[11] |
ZANG H, LI H G. Optimization of process alarm thresholds:a multidimensional kernel density estimation approach[J]. Process safety Progress, 2015, 33(3):292-298.
|
[12] |
王婷. 面向TE过程的实时优化技术研究[D]. 北京:北京化工大学, 2010. WANG T. Studies on real-time optimization of the Tennessee Eastman challenge problem[D]. Beijing:Beijing University of Chemical Technology, 2010.
|