CIESC Journal ›› 2019, Vol. 70 ›› Issue (10): 3941-3948.DOI: 10.11949/0438-1157.20190565
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Jia GU1(),Zhong XIN1,2(),Wenli GAO1,Luming HE1,Rui ZHAO1
Received:
2019-05-24
Revised:
2019-07-21
Online:
2019-10-05
Published:
2019-10-05
Contact:
Zhong XIN
通讯作者:
辛忠
作者简介:
顾佳(1991—),女,博士研究生,基金资助:
CLC Number:
Jia GU, Zhong XIN, Wenli GAO, Luming HE, Rui ZHAO. Deactivation behaviors of MoS2/Si-ZrO2 catalyst during sulfur-resistant CO methanation[J]. CIESC Journal, 2019, 70(10): 3941-3948.
顾佳, 辛忠, 高文莉, 何璐铭, 赵瑞. CO耐硫甲烷化MoS2/Si-ZrO2催化剂的失活原因研究[J]. 化工学报, 2019, 70(10): 3941-3948.
Add to citation manager EndNote|Ris|BibTeX
催化剂 | Zr① | Mo① | S① | C②/%(mass) | S②/%(mass) | S/Mo |
---|---|---|---|---|---|---|
新制催化剂 | 1.00 | 0.11 | 0.26 | 0.07 | 4.97 | 2.36 |
反应后催化剂 | 1.00 | 0.11 | 0.22 | 0.35 | 4.25 | 2.00 |
Table 1 Elemental composition of presulfided and spent catalyst
催化剂 | Zr① | Mo① | S① | C②/%(mass) | S②/%(mass) | S/Mo |
---|---|---|---|---|---|---|
新制催化剂 | 1.00 | 0.11 | 0.26 | 0.07 | 4.97 | 2.36 |
反应后催化剂 | 1.00 | 0.11 | 0.22 | 0.35 | 4.25 | 2.00 |
催化剂 | 钼物种/% | 硫物种/% | |||
---|---|---|---|---|---|
MoS2(Mo4+) | MoO x S y (Mo5+) | MoO x (Mo6+) | 桥键 | 终端 | |
新制催化剂 | 62.22 | 28.28 | 9.50 | 19.02 | 80.98 |
反应后催化剂 | 76.68 | 8.81 | 14.51 | 2.41 | 97.59 |
Table 2 Mo and S valence of MoS2/Si-ZrO2 presulfided and spent catalysts
催化剂 | 钼物种/% | 硫物种/% | |||
---|---|---|---|---|---|
MoS2(Mo4+) | MoO x S y (Mo5+) | MoO x (Mo6+) | 桥键 | 终端 | |
新制催化剂 | 62.22 | 28.28 | 9.50 | 19.02 | 80.98 |
反应后催化剂 | 76.68 | 8.81 | 14.51 | 2.41 | 97.59 |
1 | Rönsch S , Schneider J , Matthischke S , et al . Review on methanation-from fundamentals to current projects[J]. Fuel, 2016, 166(2): 276-296. |
2 | Cao H X , Zhang J , Guo C L , et al . Highly dispersed Ni nanoparticles on 3D-mesoporous KIT-6 for CO methanation: effect of promoter species on catalytic performance[J]. Chinese Journal of Catalysis, 2017, 38(7): 1127-1137. |
3 | Zhang X , Rui N , Jia X , et al . Effect of decomposition of catalyst precursor on Ni/CeO2 activity for CO methanation[J]. Chinese Journal of Catalysis, 2019, 40(4): 495-503. |
4 | Tao M , Xin Z , Meng X , et al . Highly dispersed nickel within mesochannels of SBA-15 for CO methanation with enhanced activity and excellent thermostability[J]. Fuel, 2017, 188(1): 267-276. |
5 | Gao J J , Liu Q , Gu F N , et al . Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Advances, 2015, 5(29): 22759-22776. |
6 | Andersson R , Boutonnet M , Järås S . Higher alcohols from syngas using a K/Ni/MoS2 catalyst: trace sulfur in the product and effect of H2S-containing feed[J]. Fuel, 2014, 115(1): 544-550. |
7 | Shi G , Han W , Yuan P , et al . Sulfided Mo/Al2O3 hydrodesulfurization catalyst prepared by ethanol-assisted chemical deposition method[J]. Chinese Journal of Catalysis, 2013, 34(4): 659-666. |
8 | Hao L , Xiong G , Liu L , et al . Preparation of highly dispersed desulfurization catalysts and their catalytic performance in hydrodesulfurization of dibenzothiophene[J]. Chinese Journal of Catalysis, 2016, 37(3): 412-419. |
9 | Li M , Wang D , Li J , et al . Surfactant-assisted hydrothermally synthesized MoS2 samples with controllable morphologies and structures for anthracene hydrogenation[J]. Chinese Journal of Catalysis, 2017, 38(3): 597-606. |
10 | Wang B , Yu W , Wang W , et al . Effect of boron addition on the MoO3 /CeO2–Al2O3 catalyst in the sulfur-resistant methanation[J]. Chinese Journal of Chemical Engineering, 2018, 26(3): 509-513. |
11 | Mortensen P M , Gardini D , Damsgaard C D , et al . Deactivation of Ni-MoS2 by bio-oil impurities during hydrodeoxygenation of phenol and octanol[J]. Applied Catalysis A: General, 2016, 523(8): 159-170. |
12 | Kubička D , Horáček J . Deactivation of HDS catalysts in deoxygenation of vegetable oils[J]. Applied Catalysis A: General, 2011, 394(1/2): 9-17. |
13 | Vogelaar B M , Steiner P , van Langeveld A D , et al . Deactivation of Mo/Al2O3 and NiMo/Al2O3 catalysts during hydrodesulfurization of thiophene[J]. Applied Catalysis A: General, 2003, 251(1): 85-92. |
14 | Wang H , Li G L , Rogers K , et al . Hydrotreating of waste cooking oil over supported CoMoS catalyst catalyst - deactivation mechanism study[J]. Molecular Catalysis, 2017, 443(12): 228-240. |
15 | Li Z , He J , Wang H , et al . Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3 [J]. Frontiers of Chemical Science and Engineering, 2016, 9(1): 33-39. |
16 | Afanasiev P . The influence of reducing and sulfiding conditions on the properties of unsupported MoS2-based catalysts[J]. Journal of Catalysis, 2010, 269(2): 269-280. |
17 | Dave M , Rajagopal A , Damm-Ruttensperger M , et al . Understanding homogeneous hydrogen evolution reactivity and deactivation pathways of molecular molybdenum sulfide catalysts[J]. Sustainable Energy & Fuels, 2018, 2(5): 1020-1026. |
18 | Xi F X , Bogdanoff P , Harbauer K , et al . Structural transformation identification of sputtered amorphous MoSx as an efficient hydrogen-evolving catalyst during electrochemical activation[J]. ACS Catalysis, 2019, 9(3): 2368-2380. |
19 | Gu J , Xin Z , Tao M , et al . Effect of Si-modified zirconia on the properties of MoO3/Si-ZrO2 catalysts for sulfur-resistant CO methanation[J]. Applied Catalysis A: General, 2019, 575(4): 230-237. |
20 | Gu J , Xin Z , Tao M , et al . Effect of reflux digestion time on MoO3/ZrO2 catalyst for sulfur-resistant CO methanation[J]. Fuel, 2019, 241(4): 129-137. |
21 | Zhang L , Fu W Q , Xiang M , et al . MgO nanosheet assemblies supported Co Mo catalyst with high activity in hydrodesulfurization of dibenzothiophene[J]. Industrial & Engineering Chemistry Research, 2015, 54(21): 5580-5588. |
22 | Chang Y H , Nikam R D , Lin C T , et al . Enhanced electrocatalytic activity of MoSx on TCNQ-treated electrode for hydrogen evolution reaction[J]. ACS Applied Materials Interfaces, 2014, 6(20): 17679-17685. |
23 | He M , Kong F , Yin G , et al . Enhanced hydrogen evolution reaction activity of hydrogen-annealed vertical MoS2 nanosheets[J]. RSC Advances, 2018, 8(26): 14369-14376. |
24 | Paul K K , Sreekanth N , Biroju R K , et al . Strongly enhanced visible light photoelectrocatalytic hydrogen evolution reaction in an n-doped MoS2/TiO2(B) heterojunction by selective decoration of platinum nanoparticles at the MoS2 edge sites[J]. Journal of Materials Chemistry A, 2018, 6(45): 22681-22696. |
25 | Ma L , Zhou X P , Xu X Y , et al . One-step hydrothermal synthesis of few-layered and edge-abundant MoS2/C nanocomposites with enhanced electrocatalytic performance for hydrogen evolution reaction[J]. Advanced Powder Technology, 2015, 26(5): 1273-1280. |
26 | Baubet B , Devers E , Hugon A , et al . The influence of MoS2 slab 2D morphology and edge state on the properties of alumina-supported molybdenum sulfide catalysts[J]. Applied Catalysis A: General, 2014, 487(10): 72-81. |
27 | Yin Z J , Zhao J , Wang B W , et al . Insight for the effect of bridging S2 2- in molybdenum sulfide catalysts toward sulfur-resistant methanation[J]. Applied Surface Science, 2019, 471(12): 670-677. |
28 | Zhang H P , Lin H F , Zheng Y , et al . Understanding of the effect of synthesis temperature on the crystallization and activity of nano-MoS2 catalyst[J]. Applied Catalysis B: Environmental, 2015, 165(4): 537-546. |
29 | Panpranot J , Kaewgun S , Praserthdam P . Metal-support interaction in mesoporous silica supported cobalt Fischer-Tropsch catalysts[J]. Reaction Kinetics and Catalysis Letters, 2005, 85(2): 299-304. |
30 | Ting L R L , Deng Y L , Ma L , et al . Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction[J]. ACS Catalysis, 2016, 6(2): 861-867. |
31 | Afanasiev P , Jobic H , Lorentz C , et al . Low-temperature hydrogen interaction with amorphous molybdenum sulfides MoSx[J]. Journal of Physical Chemistry C, 2009, 113(10): 4136-4146. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[6] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[7] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[8] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[9] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[10] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[11] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[12] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[13] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[14] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[15] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||