CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5578-5588.DOI: 10.11949/0438-1157.20200539
• Catalysis, kinetics and reactors • Previous Articles Next Articles
YANG Runnong1(),YU Lin1(),ZHAO Xiangyun2,YANG Xiaobo1,2(),GAO Zihan1,FU Guangying3,JIANG Jiuxing3,LIAN Weilin2,LIU Wuyuan1,2,FAN Qun1,2
Received:
2020-05-09
Revised:
2020-07-08
Online:
2020-12-05
Published:
2020-12-05
Contact:
YU Lin,YANG Xiaobo
杨润农1(),余林1(),赵向云2,杨晓波1,2(),高梓寒1,傅广赢3,姜久兴3,练纬琳2,刘武源1,2,范群1,2
通讯作者:
余林,杨晓波
作者简介:
杨润农(1989—),女,博士研究生,基金资助:
CLC Number:
YANG Runnong,YU Lin,ZHAO Xiangyun,YANG Xiaobo,GAO Zihan,FU Guangying,JIANG Jiuxing,LIAN Weilin,LIU Wuyuan,FAN Qun. Phi zeolite synthesized by template-free method for selective catalytic reduction of NO[J]. CIESC Journal, 2020, 71(12): 5578-5588.
杨润农,余林,赵向云,杨晓波,高梓寒,傅广赢,姜久兴,练纬琳,刘武源,范群. 无模板法合成的Phi分子筛在NO选择性催化还原中的应用[J]. 化工学报, 2020, 71(12): 5578-5588.
Add to citation manager EndNote|Ris|BibTeX
Catalyst① | Cu content /% | M② content /% | Effect on catalytic activity | Effect on hydrothermal stability | Ref. |
---|---|---|---|---|---|
Cu-Na-SSZ-13(4) | ~2.5 | <1.7 | slightly enhanced | positive | [ |
1.7—3.4 | negative | negative | |||
Cu-Li/Na-SSZ-13(6) | 1.0 | 0.4/1.8 | positive | positive | [ |
Cu-K/Cs-SSZ-13(6) | 0.9/0.6 | 4.2/15.0 | negative | negative | [ |
Cu-Na-SSZ-13(9) | 1.0 | 1.5 | slightly enhanced | — | [ |
2.0—4.0 | 1.5 | negative | negative | ||
Cu-Na-SSZ-13 | 1.7—3.9 | <0.8 | positive | positive | [ |
4.3—5.3 | 2.5—3.7 | negative | negative | ||
Cu-Ba-BEA(25) | — | 2.0 | no influence | positive | [ |
Cu-Na-ZSM-5 | 2.4—3.5 | 0.04—0.6 | positive | — | [ |
Cu-Na-SSZ-13(12) | — | 1.2—3.5 | negative | negative | [ |
Cu-Na-SSZ-13 | — | 0.7—3.5 | negative | negative | [ |
Cu-Na-SAPO-34 | ~2.0 | 0.4—1.8 | negative | — | [ |
Cu-K/Na/Ca/Mg-SAPO-18 | ~2.1 | ~0.5 | negative | negative | [ |
~1.0 | negative | negative | |||
Cu-K/Mg/Ca/Na-SSZ-39 | ~2.3 | 3.9/2.2/3.1/3.0 | negative | negative | [ |
Table 1 Effect of alkali/alkaline earth metals on different zeolite catalysts
Catalyst① | Cu content /% | M② content /% | Effect on catalytic activity | Effect on hydrothermal stability | Ref. |
---|---|---|---|---|---|
Cu-Na-SSZ-13(4) | ~2.5 | <1.7 | slightly enhanced | positive | [ |
1.7—3.4 | negative | negative | |||
Cu-Li/Na-SSZ-13(6) | 1.0 | 0.4/1.8 | positive | positive | [ |
Cu-K/Cs-SSZ-13(6) | 0.9/0.6 | 4.2/15.0 | negative | negative | [ |
Cu-Na-SSZ-13(9) | 1.0 | 1.5 | slightly enhanced | — | [ |
2.0—4.0 | 1.5 | negative | negative | ||
Cu-Na-SSZ-13 | 1.7—3.9 | <0.8 | positive | positive | [ |
4.3—5.3 | 2.5—3.7 | negative | negative | ||
Cu-Ba-BEA(25) | — | 2.0 | no influence | positive | [ |
Cu-Na-ZSM-5 | 2.4—3.5 | 0.04—0.6 | positive | — | [ |
Cu-Na-SSZ-13(12) | — | 1.2—3.5 | negative | negative | [ |
Cu-Na-SSZ-13 | — | 0.7—3.5 | negative | negative | [ |
Cu-Na-SAPO-34 | ~2.0 | 0.4—1.8 | negative | — | [ |
Cu-K/Na/Ca/Mg-SAPO-18 | ~2.1 | ~0.5 | negative | negative | [ |
~1.0 | negative | negative | |||
Cu-K/Mg/Ca/Na-SSZ-39 | ~2.3 | 3.9/2.2/3.1/3.0 | negative | negative | [ |
Sample | Mass content/% | Atomic ratio② | ||||
---|---|---|---|---|---|---|
Cu | Na | Mg | Si/Al | Cu/Al | M③/Al | |
Cu/SSZ-13 | 3.16①/2.29② | — | — | 10.9 | 0.36 | — |
Cu/Phi | 4.41①/3.58② | — | — | 4.65 | 0.24 | — |
Na,Cu/Phi | 4.83①/4.07② | 0.81①/0.80② | — | 4.81 | 0.26 | 0.14 |
Mg,Cu/Phi | 4.07①/3.04② | — | 1.53①/1.10② | 4.71 | 0.20 | 0.20 |
Table 2 Element contents in catalysts
Sample | Mass content/% | Atomic ratio② | ||||
---|---|---|---|---|---|---|
Cu | Na | Mg | Si/Al | Cu/Al | M③/Al | |
Cu/SSZ-13 | 3.16①/2.29② | — | — | 10.9 | 0.36 | — |
Cu/Phi | 4.41①/3.58② | — | — | 4.65 | 0.24 | — |
Na,Cu/Phi | 4.83①/4.07② | 0.81①/0.80② | — | 4.81 | 0.26 | 0.14 |
Mg,Cu/Phi | 4.07①/3.04② | — | 1.53①/1.10② | 4.71 | 0.20 | 0.20 |
1 | 秦萱, 尹德嘉,余丽泽,等. 硅铝比对Cu/SSZ-13的SCR活性位影响规律研究[J]. 中国环境科学, 2020, 40(2): 591-599. |
Qin X, Yin D J, Yu L Z, et al. Effect of Si/Al ratio on the SCR active sites of Cu/SSZ-13[J]. China Environmental Science, 2020, 40(2): 591-599. | |
2 | 高岩. 选择性催化还原脱硝催化剂的实验与机理研究[D]. 济南: 山东大学, 2013. |
Gao Y. Experiment and mechanism analysis on selective catalytic reduction deNOx catalyst[D]. Jinan: Shandong University, 2013. | |
3 | Roy S, Baiker A. NOx storage-reduction catalysis: from mechanism and materials properties to storage-reduction performance[J]. Chemical Reviews, 2009, 109(9): 4054-4091. |
4 | Hong Z, Wang Z, Liu X B. Catalytic oxidation of nitric oxide (NO) over different catalysts: an overview[J]. Catalysis Science & Technology, 2017, 7: 3440. |
5 | 左建良. 氮氧化物低温选择性催化还原锰基催化剂研究[D]. 广州: 华南理工大学, 2014. |
Zuo J L. Study on Mn-based catalysts for low-temperature selective catalytic reduction of NOx[D]. Guangzhou: South China University of Technology, 2014. | |
6 | 郭星萌. 船用柴油机尾气后处理系统的优化设计[D]. 贵阳: 贵州民族大学, 2019. |
Guo X M. Optimization design and policy simulation of marine diesel engine post-processing system[D]. Guiyang: Guizhou Minzu University, 2019. | |
7 | 翁端, 王蕾, 吴晓东, 等. 铜基小孔分子筛柴油车尾气脱硝催化材料研究进展[J]. 科技导报, 2013, 31(24): 68-73. |
Weng D, Wang L, Wu X D, et al. Progress for Cu-based small pore molecular sieves as disel De-NOx catalysts[J]. Science & Technology Review, 2013, 32(24): 68-73. | |
8 | 张秋林, 徐海迪,邱春天,等. Cu-ZSM-5的NH3选择性催化还原NO性能及其稳态动力学[J]. 物理化学学报, 2012, 28(5): 1230-1236. |
Zhang Q L, Xu H D, Qiu C T, et al. Catalytic performance and steady-state kinetics of Cu-ZSM-5 for selective catalytic reduction of NO with NH3[J]. Acta Physico-Chimica Sinica, 2012, 28(5): 1230-1236. | |
9 | 汪宗御, 邝海浪, 张继锋, 等. 基于 DOC+SCR 的船用柴油机尾气污染物脱除实验[J]. 化工学报, 2018, 69(7): 3249-3256. |
Wang Z Y, Kuang H L, Zhang J F, et al. Removal of marine diesel engine exhaust pollutants with DOC+SCR technologies[J]. CIESC Journal, 2018, 69(7): 3249-3256. | |
10 | Hu H, Cai S X, Li H R, et al. Mechanistic aspects of deNOx processing over TiO2 supported Co-Mn oxide catalysts: structure-activity relationships and in situ DRIFTs analysis[J]. ASC Catalysis, 2015, 5: 6069-6077. |
11 | 刘建华, 杨晓博, 张琛, 等. Fe2O3对V2O5-WO3/TiO2催化剂表面性质及其性能的影响[J]. 化工学报, 2016, 67(4): 1287-1293. |
Liu J H, Yang X B, Zhang C, et al. Effect of Fe2O3 on surface properties and activities of V2O5-WO3/TiO2 catalysts[J]. CIESC Journal, 2016, 67(4): 1287-1293. | |
12 | Wang Z Y, Guo R T, Shi X, et al. The enhanced performance of Sb-modified Cu/TiO2 catalyst for selective catalytic reduction of NOx with NH3[J]. Applied Surface Science, 2019, 475: 334-341. |
13 | 郭凤, 余剑, Tran Tuyet-Suong, 等. 溶胶-凝胶原位合成钒钨钛催化剂及NH3-SCR性能[J]. 化工学报, 2017, 68(7): 3747-3754. |
Guo F, Yu J, Tran T S, et al. In situ preparation of mesoporous V2O5-WO3/TiO2 catalyst by sol-gel method and its performance for NH3-SCR reaction[J]. CIESC Journal, 2017, 68(7): 3747-3754. | |
14 | 宿文康. Cu/CHA分子筛选择性催化还原柴油车尾气NOx的机理研究[D]. 北京: 清华大学, 2016. |
Su W K. Fundamental research on SCR of NOx by NH3 over Cu/CHA zeolite for diesel vehicle emission control[D]. Beijing: Tsinghua University, 2016. | |
15 | Prodinger S, Derewinski M A, Wang Y L, et al. Sub-micron Cu/SSZ-13: synthesis and application as selective catalytic reduction (SCR) catalysts[J]. Applied Catalysis B: Environmental, 2017, 201: 461-469. |
16 | Ye Y Z, Shen F, Wang H N, et al. SSZ-13-supported manganese oxide catalysts for low temperature selective catalytic reduction of NOx by NH3[J]. Journal of Chemical Sciences, 2017, 129(6): 765-774. |
17 | Wang C, Wang J, Wang J Q, et al. The role of impregnated sodium ions in Cu/SSZ-13 NH3-SCR catalysts[J]. Catalysts, 2018, 8(12): 593. |
18 | Gao F, Szanyi J. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts[J]. Applied Catalysis A: General, 2018, 560: 185-194. |
19 | Godiksen A, Stappen F N, Vennestrøm P N R, et al. Coordination environment of copper sites in Cu-CHA zeolite investigated by electron paramagnetic resonance[J]. The Journal of Physical Chemistry C, 2014, 118(40): 23126-23138. |
20 | Janssens T V W, Falsig H, Lundegaard L F, et al. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia[J]. ACS Catalysis, 2015, 5(5): 2832-2845. |
21 | Zhao Z C, Yu R, Zhao R R, et al. Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: effects of Na+ ions on the activity and hydrothermal stability[J]. Applied Catalysis B: Environmental, 2017, 217: 421-428. |
22 | Gao F, Wang Y L, Washton N M, et al. Effects of alkali and alkaline earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH3-SCR catalysts[J]. ACS Catalysis, 2015, 5(11): 6780-6791. |
23 | Wang C, Yan W J, Wang Z X, et al. The role of alkali metal ions on hydrothermal stability of Cu/SSZ-13 NH3-SCR catalysts[J]. Catalysis Today, 2020, 355: 482-492. |
24 | Ming S, Pang L, Fan C, et al. Chemical deactivation of Cu-SAPO-18 deNO catalyst caused by basic inorganic contaminants in diesel exhaust[J]. Chinese Journal of Catalysis, 2019, 40(4): 590-599. |
25 | Cui Y R, Wang Y L, Walter E D, et al. Influences of Na+ co-cation on the structure and performance of Cu/SSZ-13 selective catalytic reduction catalysts[J]. Catalysis Today, 2020, 339: 233-240. |
26 | Xie L J, Liu F D, Shi X Y, et al. Effects of post-treatment method and Na co-cation on the hydrothermal stability of Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3[J]. Applied Catalysis B: Environmental, 2015, 179: 206-212. |
27 | Lin Q J, Liu J Y, Liu S, et al. Barium-promoted hydrothermal stability of monolithic Cu/BEA catalyst for NH3-SCR[J]. Dalton Trans, 2018, 47(42): 15038-15048. |
28 | Sultana A, Nanba T, Haneda M, et al. Influence of co-cations on the formation of Cu+ species in Cu/ZSM-5 and its effect on selective catalytic reduction of NOx with NH3[J]. Applied Catalysis B: Environmental, 2010, 101(1/2): 61-67. |
29 | Wang C, Wang C, Wang J, et al. Effects of Na+ on Cu/SAPO-34 for ammonia selective catalytic reduction[J]. Journal of Environmental Sciences, 2018, 70: 20-28. |
30 | Zhu N, Shan W P, Shan Y L, et al. Effects of alkali and alkaline earth metals on Cu-SSZ-39 catalyst for the selective catalytic reduction of NO with NH3[J]. Chemical Engineering Journal, 2020, 388: 124250. |
31 | Yang X B, Zhao X Y, Xiao J M, et al. High silica zeolite Phi, a CHA type zeolite with ABC-D6R stacking faults[J]. Microporous and Mesoporous Materials, 2017, 248: 129-138. |
32 | 刘小青, 李时卉, 孙梦婷, 等. MnOx/SAPO-11催化剂的制备、表征及其低温NH3-SCR活性[J]. 物理化学学报, 2016, 32(5): 1236-1246. |
Liu X Q, Li S H, Sun M T, et al. Preparation, characterization and low-temperature NH3-SCR activity of MnOx/SAPO-11 catalysts[J]. Acta Physico-Chimica Sinica, 2016, 32(5): 1236-1246. | |
33 | 郝腾. SO2对Cu/SAPO-34催化剂NH3-SCR性能的影响[D]. 天津: 天津大学, 2014. |
He T. The effect of SO2 poisoning on the NH3-SCR performance over Cu/SAPO-34 catalysts[D]. Tianjin: Tianjin University, 2014. | |
34 | Niu C, Shi X Y, Liu F D, et al. High hydrothermal stability of Cu-SAPO-34 catalysts for the NH3-SCR of NOx[J]. Chemical Engineering Journal, 2016, 294: 254-263. |
35 | Wang Q Y, Liu Z L, Zou H B, et al. Effect of calcinations temperature of Cu/Ti-PILCs for selective catalytic reduction of NO by propylene[J]. Advanced Materials Research, 2012, 396/397/398: 776-781. |
36 | Bendrich M, Scheuer A, Hayes R E, et al. Unified mechanistic model for standard SCR, fast SCR, and NO2 SCR over a copper chabazite catalyst[J]. Applied Catalysis B: Environmental, 2018, 222: 76-87. |
37 | Zhang D, Yang R T. NH3-SCR of NO over one-pot Cu-SAPO-34 catalyst: performance enhancement by doping Fe and MnCe and insight into N2O formation[J]. Applied Catalysis A: General, 2017, 543: 247-256. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[8] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[9] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[10] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[11] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[12] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[13] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[14] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[15] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||