CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5725-5734.DOI: 10.11949/0438-1157.20200232
• Surface and interface engineering • Previous Articles Next Articles
LIN Wei1,2(),WANG Zhonghao1,2,WANG Wei1,2(),YU Jiuyang1,2,ZHENG Xiaotao1,2,XU Jianmin1,2,WANG Chenggang1,2,MA Linwei1,2
Received:
2020-03-04
Revised:
2020-07-30
Online:
2020-12-05
Published:
2020-12-05
Contact:
WANG Wei
林纬1,2(),王众浩1,2,汪威1,2(),喻九阳1,2,郑小涛1,2,徐建民1,2,王成刚1,2,马琳伟1,2
通讯作者:
汪威
作者简介:
林纬(1987—),男,博士,副教授,基金资助:
CLC Number:
LIN Wei,WANG Zhonghao,WANG Wei,YU Jiuyang,ZHENG Xiaotao,XU Jianmin,WANG Chenggang,MA Linwei. Analysis of water softening characteristics of electrochemical method based on orthogonal experiment[J]. CIESC Journal, 2020, 71(12): 5725-5734.
林纬,王众浩,汪威,喻九阳,郑小涛,徐建民,王成刚,马琳伟. 基于正交实验的电化学法水软化特性分析[J]. 化工学报, 2020, 71(12): 5725-5734.
Add to citation manager EndNote|Ris|BibTeX
水平 | 因素 | |||
---|---|---|---|---|
电压/V | 硬度/(mg/L) | 极板间距/mm | 停留时间/h | |
Case1 | 7 | 400 | 120 | 6 |
Case2 | 14 | 600 | 90 | 3 |
Case3 | 21 | 800 | 60 | 2 |
Case4 | 28 | 1000 | 30 | 1.5 |
Table 1 Pre-experimental factors and levels
水平 | 因素 | |||
---|---|---|---|---|
电压/V | 硬度/(mg/L) | 极板间距/mm | 停留时间/h | |
Case1 | 7 | 400 | 120 | 6 |
Case2 | 14 | 600 | 90 | 3 |
Case3 | 21 | 800 | 60 | 2 |
Case4 | 28 | 1000 | 30 | 1.5 |
组别 | 溶液硬度/(mg/L) | |
---|---|---|
配制溶液 | 静置后溶液 | |
Case1 | 400 | 296.65 |
Case2 | 600 | 489.3 |
Case3 | 800 | 701.25 |
Case4 | 1000 | 1015 |
Table 2 Experimental results of the standing group
组别 | 溶液硬度/(mg/L) | |
---|---|---|
配制溶液 | 静置后溶液 | |
Case1 | 400 | 296.65 |
Case2 | 600 | 489.3 |
Case3 | 800 | 701.25 |
Case4 | 1000 | 1015 |
组别 | 因素 | ||||
---|---|---|---|---|---|
电压/V | 间距/mm | 硬度/ (mg/L) | 停留 时间/h | 除垢量/ (mg/L) | |
1 | 7 | 120 | 400 | 6 | 879.5 |
2 | 7 | 90 | 600 | 3 | 1177 |
3 | 7 | 60 | 800 | 2 | 1539 |
4 | 7 | 30 | 1000 | 1.5 | 2340 |
5 | 14 | 120 | 600 | 2 | 2160 |
6 | 14 | 90 | 400 | 1.5 | 2390 |
7 | 14 | 60 | 1000 | 6 | 2122 |
8 | 14 | 30 | 800 | 3 | 2583 |
9 | 21 | 120 | 800 | 1.5 | 9500 |
10 | 21 | 90 | 1000 | 2 | 8241 |
11 | 21 | 60 | 400 | 3 | 1474 |
12 | 21 | 30 | 600 | 6 | 1421 |
13 | 28 | 120 | 1000 | 3 | 7751 |
14 | 28 | 90 | 800 | 6 | 3883 |
15 | 28 | 60 | 600 | 1.5 | 4784 |
16 | 28 | 30 | 400 | 2 | 2476.5 |
均值1 | 1483.875 | 5072.625 | 1805 | 2076.375 | 54721 |
均值2 | 2313.75 | 3922.75 | 2385.5 | 3246.25 | |
均值3 | 5159 | 2479.75 | 4376.25 | 3604.125 | |
均值4 | 4723.625 | 2205.125 | 5113.5 | 4753.5 | |
极差R | 3675.125 | 2867.5 | 3308.5 | 2677.125 |
Table 3 Pre-experimental results
组别 | 因素 | ||||
---|---|---|---|---|---|
电压/V | 间距/mm | 硬度/ (mg/L) | 停留 时间/h | 除垢量/ (mg/L) | |
1 | 7 | 120 | 400 | 6 | 879.5 |
2 | 7 | 90 | 600 | 3 | 1177 |
3 | 7 | 60 | 800 | 2 | 1539 |
4 | 7 | 30 | 1000 | 1.5 | 2340 |
5 | 14 | 120 | 600 | 2 | 2160 |
6 | 14 | 90 | 400 | 1.5 | 2390 |
7 | 14 | 60 | 1000 | 6 | 2122 |
8 | 14 | 30 | 800 | 3 | 2583 |
9 | 21 | 120 | 800 | 1.5 | 9500 |
10 | 21 | 90 | 1000 | 2 | 8241 |
11 | 21 | 60 | 400 | 3 | 1474 |
12 | 21 | 30 | 600 | 6 | 1421 |
13 | 28 | 120 | 1000 | 3 | 7751 |
14 | 28 | 90 | 800 | 6 | 3883 |
15 | 28 | 60 | 600 | 1.5 | 4784 |
16 | 28 | 30 | 400 | 2 | 2476.5 |
均值1 | 1483.875 | 5072.625 | 1805 | 2076.375 | 54721 |
均值2 | 2313.75 | 3922.75 | 2385.5 | 3246.25 | |
均值3 | 5159 | 2479.75 | 4376.25 | 3604.125 | |
均值4 | 4723.625 | 2205.125 | 5113.5 | 4753.5 | |
极差R | 3675.125 | 2867.5 | 3308.5 | 2677.125 |
水平 | 因素 | ||||
---|---|---|---|---|---|
硬度(A)/ (mg/L) | 电压(B)/V | 极板(C) | 间距(D)/mm | 频率(E)/kHz | |
Case1 | 600 | 10 | 钛板 | 50 | 2 |
Case2 | 700 | 15 | 钛网1 | 75 | 4 |
Case3 | 800 | 20 | 钛网2 | 100 | 6 |
Case4 | 900 | 25 | 钛网3 | 125 | 8 |
Case5 | 1000 | 30 | 钛网4 | 150 | 10 |
Table 4 HF group factors and levels
水平 | 因素 | ||||
---|---|---|---|---|---|
硬度(A)/ (mg/L) | 电压(B)/V | 极板(C) | 间距(D)/mm | 频率(E)/kHz | |
Case1 | 600 | 10 | 钛板 | 50 | 2 |
Case2 | 700 | 15 | 钛网1 | 75 | 4 |
Case3 | 800 | 20 | 钛网2 | 100 | 6 |
Case4 | 900 | 25 | 钛网3 | 125 | 8 |
Case5 | 1000 | 30 | 钛网4 | 150 | 10 |
水平 | 因素 | |||
---|---|---|---|---|
硬度(A)/ (mg/L) | 电压(B)/V | 极板(C) | 间距(D)/mm | |
Case1 | 600 | 10 | 钛板 | 50 |
Case2 | 700 | 15 | 钛网1 | 75 |
Case3 | 800 | 20 | 钛网2 | 100 |
Case4 | 900 | 25 | 钛网3 | 125 |
Case5 | 1000 | 30 | 钛网4 | 150 |
Table 5 DC group factors and levels
水平 | 因素 | |||
---|---|---|---|---|
硬度(A)/ (mg/L) | 电压(B)/V | 极板(C) | 间距(D)/mm | |
Case1 | 600 | 10 | 钛板 | 50 |
Case2 | 700 | 15 | 钛网1 | 75 |
Case3 | 800 | 20 | 钛网2 | 100 |
Case4 | 900 | 25 | 钛网3 | 125 |
Case5 | 1000 | 30 | 钛网4 | 150 |
组别 | 因素 | 硬度/(mg/L) | 硬度去除率/% | ||||
---|---|---|---|---|---|---|---|
硬度(A)/(mg/L) | 电压(B)/V | 极板(C) | 间距(D)/mm | 频率(E)/kHz | |||
1 | 600 | 10 | 钛板 | 50 | 2 | 160.79 | 73.20 |
2 | 600 | 15 | 3×6钛网 | 75 | 4 | 160.14 | 73.31 |
3 | 600 | 20 | 4.5×6钛网 | 100 | 6 | 104.17 | 82.64 |
4 | 600 | 25 | 6×9钛网 | 125 | 8 | 113.25 | 81.13 |
5 | 600 | 30 | 6×12钛网 | 150 | 10 | 139.32 | 76.78 |
6 | 700 | 10 | 4.5×6钛网 | 75 | 8 | 166.19 | 76.26 |
7 | 700 | 15 | 6×9钛网 | 100 | 10 | 148.03 | 78.85 |
8 | 700 | 20 | 6×12钛网 | 125 | 2 | 146.79 | 79.03 |
9 | 700 | 25 | 钛板 | 150 | 4 | 197.95 | 71.72 |
10 | 700 | 30 | 3×6钛网 | 50 | 6 | 56.33 | 91.95 |
11 | 800 | 10 | 6×12钛网 | 100 | 4 | 203.84 | 74.52 |
12 | 800 | 15 | 钛板 | 125 | 6 | 21.99 | 97.25 |
13 | 800 | 20 | 3×6钛网 | 150 | 8 | 183.02 | 77.12 |
14 | 800 | 25 | 4.5×6钛网 | 50 | 10 | 56.18 | 92.98 |
15 | 800 | 30 | 6×9钛网 | 75 | 2 | 111.14 | 86.11 |
16 | 900 | 10 | 3×6钛网 | 125 | 10 | 277.78 | 69.14 |
17 | 900 | 15 | 4.5×6钛网 | 150 | 2 | 99.23 | 88.97 |
18 | 900 | 20 | 6×9钛网 | 50 | 4 | 99.02 | 89.00 |
19 | 900 | 25 | 6×12钛网 | 75 | 6 | 88.76 | 90.14 |
20 | 900 | 30 | 钛板 | 100 | 8 | 152.45 | 83.06 |
21 | 1000 | 10 | 6×9钛网 | 150 | 6 | 296.3 | 70.37 |
22 | 1000 | 15 | 6×12钛网 | 50 | 8 | 201.22 | 79.88 |
23 | 1000 | 20 | 钛板 | 75 | 10 | 170.38 | 82.96 |
24 | 1000 | 25 | 3×6钛网 | 100 | 2 | 163.32 | 83.67 |
25 | 1000 | 30 | 4.5×6钛网 | 125 | 4 | 71.04 | 92.90 |
Table 6 Orthogonal experiment results of HF group
组别 | 因素 | 硬度/(mg/L) | 硬度去除率/% | ||||
---|---|---|---|---|---|---|---|
硬度(A)/(mg/L) | 电压(B)/V | 极板(C) | 间距(D)/mm | 频率(E)/kHz | |||
1 | 600 | 10 | 钛板 | 50 | 2 | 160.79 | 73.20 |
2 | 600 | 15 | 3×6钛网 | 75 | 4 | 160.14 | 73.31 |
3 | 600 | 20 | 4.5×6钛网 | 100 | 6 | 104.17 | 82.64 |
4 | 600 | 25 | 6×9钛网 | 125 | 8 | 113.25 | 81.13 |
5 | 600 | 30 | 6×12钛网 | 150 | 10 | 139.32 | 76.78 |
6 | 700 | 10 | 4.5×6钛网 | 75 | 8 | 166.19 | 76.26 |
7 | 700 | 15 | 6×9钛网 | 100 | 10 | 148.03 | 78.85 |
8 | 700 | 20 | 6×12钛网 | 125 | 2 | 146.79 | 79.03 |
9 | 700 | 25 | 钛板 | 150 | 4 | 197.95 | 71.72 |
10 | 700 | 30 | 3×6钛网 | 50 | 6 | 56.33 | 91.95 |
11 | 800 | 10 | 6×12钛网 | 100 | 4 | 203.84 | 74.52 |
12 | 800 | 15 | 钛板 | 125 | 6 | 21.99 | 97.25 |
13 | 800 | 20 | 3×6钛网 | 150 | 8 | 183.02 | 77.12 |
14 | 800 | 25 | 4.5×6钛网 | 50 | 10 | 56.18 | 92.98 |
15 | 800 | 30 | 6×9钛网 | 75 | 2 | 111.14 | 86.11 |
16 | 900 | 10 | 3×6钛网 | 125 | 10 | 277.78 | 69.14 |
17 | 900 | 15 | 4.5×6钛网 | 150 | 2 | 99.23 | 88.97 |
18 | 900 | 20 | 6×9钛网 | 50 | 4 | 99.02 | 89.00 |
19 | 900 | 25 | 6×12钛网 | 75 | 6 | 88.76 | 90.14 |
20 | 900 | 30 | 钛板 | 100 | 8 | 152.45 | 83.06 |
21 | 1000 | 10 | 6×9钛网 | 150 | 6 | 296.3 | 70.37 |
22 | 1000 | 15 | 6×12钛网 | 50 | 8 | 201.22 | 79.88 |
23 | 1000 | 20 | 钛板 | 75 | 10 | 170.38 | 82.96 |
24 | 1000 | 25 | 3×6钛网 | 100 | 2 | 163.32 | 83.67 |
25 | 1000 | 30 | 4.5×6钛网 | 125 | 4 | 71.04 | 92.90 |
组别 | 因素 | 硬度/(mg/L) | 硬度去除率/% | |||
---|---|---|---|---|---|---|
硬度(A)/(mg/L) | 电压(B)/V | 极板(C) | 间距(D)/mm | |||
1 | 600 | 10 | 钛板 | 50 | 212.4 | 64.60 |
2 | 600 | 15 | 3×6钛网 | 75 | 218.52 | 63.58 |
3 | 600 | 20 | 4.5×6钛网 | 100 | 218.08 | 63.65 |
4 | 600 | 25 | 6×9钛网 | 125 | 212.27 | 64.62 |
5 | 600 | 30 | 6×12钛网 | 150 | 206.28 | 65.62 |
6 | 700 | 10 | 4.5×6钛网 | 75 | 189.72 | 72.90 |
7 | 700 | 15 | 6×9钛网 | 100 | 187.68 | 73.19 |
8 | 700 | 20 | 6×12钛网 | 125 | 68.27 | 90.25 |
9 | 700 | 25 | 钛板 | 150 | 68.41 | 90.23 |
10 | 700 | 30 | 3×6钛网 | 50 | 15.8 | 97.74 |
11 | 800 | 10 | 6×12钛网 | 100 | 36.57 | 95.43 |
12 | 800 | 15 | 钛板 | 125 | 111.33 | 86.08 |
13 | 800 | 20 | 3×6钛网 | 150 | 69.07 | 91.37 |
14 | 800 | 25 | 4.5×6钛网 | 50 | 203.71 | 74.54 |
15 | 800 | 30 | 6×9钛网 | 75 | 22.68 | 97.17 |
16 | 900 | 10 | 3×6钛网 | 125 | 175.35 | 80.52 |
17 | 900 | 15 | 4.5×6钛网 | 150 | 100.87 | 88.79 |
18 | 900 | 20 | 6×9钛网 | 50 | 37.57 | 95.83 |
19 | 900 | 25 | 6×12钛网 | 75 | 31.61 | 96.49 |
20 | 900 | 30 | 钛板 | 100 | 122.42 | 86.40 |
21 | 1000 | 10 | 6×9钛网 | 150 | 140.13 | 85.99 |
22 | 1000 | 15 | 6×12钛网 | 50 | 32.76 | 96.72 |
23 | 1000 | 20 | 钛板 | 75 | 62.8 | 93.72 |
24 | 1000 | 25 | 3×6钛网 | 100 | 29.26 | 97.07 |
25 | 1000 | 30 | 4.5×6钛网 | 125 | 54.17 | 94.58 |
Table 7 Orthogonal experiment results of DC group
组别 | 因素 | 硬度/(mg/L) | 硬度去除率/% | |||
---|---|---|---|---|---|---|
硬度(A)/(mg/L) | 电压(B)/V | 极板(C) | 间距(D)/mm | |||
1 | 600 | 10 | 钛板 | 50 | 212.4 | 64.60 |
2 | 600 | 15 | 3×6钛网 | 75 | 218.52 | 63.58 |
3 | 600 | 20 | 4.5×6钛网 | 100 | 218.08 | 63.65 |
4 | 600 | 25 | 6×9钛网 | 125 | 212.27 | 64.62 |
5 | 600 | 30 | 6×12钛网 | 150 | 206.28 | 65.62 |
6 | 700 | 10 | 4.5×6钛网 | 75 | 189.72 | 72.90 |
7 | 700 | 15 | 6×9钛网 | 100 | 187.68 | 73.19 |
8 | 700 | 20 | 6×12钛网 | 125 | 68.27 | 90.25 |
9 | 700 | 25 | 钛板 | 150 | 68.41 | 90.23 |
10 | 700 | 30 | 3×6钛网 | 50 | 15.8 | 97.74 |
11 | 800 | 10 | 6×12钛网 | 100 | 36.57 | 95.43 |
12 | 800 | 15 | 钛板 | 125 | 111.33 | 86.08 |
13 | 800 | 20 | 3×6钛网 | 150 | 69.07 | 91.37 |
14 | 800 | 25 | 4.5×6钛网 | 50 | 203.71 | 74.54 |
15 | 800 | 30 | 6×9钛网 | 75 | 22.68 | 97.17 |
16 | 900 | 10 | 3×6钛网 | 125 | 175.35 | 80.52 |
17 | 900 | 15 | 4.5×6钛网 | 150 | 100.87 | 88.79 |
18 | 900 | 20 | 6×9钛网 | 50 | 37.57 | 95.83 |
19 | 900 | 25 | 6×12钛网 | 75 | 31.61 | 96.49 |
20 | 900 | 30 | 钛板 | 100 | 122.42 | 86.40 |
21 | 1000 | 10 | 6×9钛网 | 150 | 140.13 | 85.99 |
22 | 1000 | 15 | 6×12钛网 | 50 | 32.76 | 96.72 |
23 | 1000 | 20 | 钛板 | 75 | 62.8 | 93.72 |
24 | 1000 | 25 | 3×6钛网 | 100 | 29.26 | 97.07 |
25 | 1000 | 30 | 4.5×6钛网 | 125 | 54.17 | 94.58 |
指标 | 因素 | |||
---|---|---|---|---|
硬度(A) | 电压(B) | 间距(C) | 极板(D) | |
K1 | 386.490 | 649.166 | 699.552 | 684.528 |
K2 | 594.024 | 669.816 | 694.982 | 698.448 |
K3 | 711.328 | 702.682 | 675.038 | 640.530 |
K4 | 806.436 | 687.298 | 672.072 | 676.284 |
K5 | 936.176 | 708.026 | 675.344 | 717.198 |
极差R | 549.686 | 66.564 | 23.830 | 78.212 |
Table 8 DC power range analysis
指标 | 因素 | |||
---|---|---|---|---|
硬度(A) | 电压(B) | 间距(C) | 极板(D) | |
K1 | 386.490 | 649.166 | 699.552 | 684.528 |
K2 | 594.024 | 669.816 | 694.982 | 698.448 |
K3 | 711.328 | 702.682 | 675.038 | 640.530 |
K4 | 806.436 | 687.298 | 672.072 | 676.284 |
K5 | 936.176 | 708.026 | 675.344 | 717.198 |
极差R | 549.686 | 66.564 | 23.830 | 78.212 |
指标 | 因素 | ||||
---|---|---|---|---|---|
硬度(A) | 电压(B) | 间距(C) | 极板(D) | 频率(E) | |
K1 | 464.466 | 579.020 | 683.492 | 659.288 | 663.746 |
K2 | 556.942 | 672.078 | 660.678 | 631.882 | 653.602 |
K3 | 684.766 | 659.324 | 645.638 | 700.638 | 686.490 |
K4 | 756.552 | 676.108 | 673.830 | 646.452 | 634.974 |
K5 | 817.748 | 693.944 | 616.836 | 642.214 | 641.662 |
极差R | 353.282 | 114.924 | 66.656 | 68.756 | 51.516 |
Table 9 HF power range analysis
指标 | 因素 | ||||
---|---|---|---|---|---|
硬度(A) | 电压(B) | 间距(C) | 极板(D) | 频率(E) | |
K1 | 464.466 | 579.020 | 683.492 | 659.288 | 663.746 |
K2 | 556.942 | 672.078 | 660.678 | 631.882 | 653.602 |
K3 | 684.766 | 659.324 | 645.638 | 700.638 | 686.490 |
K4 | 756.552 | 676.108 | 673.830 | 646.452 | 634.974 |
K5 | 817.748 | 693.944 | 616.836 | 642.214 | 641.662 |
极差R | 353.282 | 114.924 | 66.656 | 68.756 | 51.516 |
因素 | 指标 | ||||
---|---|---|---|---|---|
离差平方和 | 自由度 | F比 | F临界值 | 显著性 | |
硬度(A) | 945909.949 | 4 | 35.071 | F0.01=16.000 | * |
电压(B) | 13194.854 | 4 | 0.489 | F0.05=6.390 | |
间距(C) | 2704.561 | 4 | 0.100 | F0.05=6.390 | |
极板(D) | 16311.919 | 4 | 0.999 | F0.05=6.390 |
Table 10 DC power variance analysis
因素 | 指标 | ||||
---|---|---|---|---|---|
离差平方和 | 自由度 | F比 | F临界值 | 显著性 | |
硬度(A) | 945909.949 | 4 | 35.071 | F0.01=16.000 | * |
电压(B) | 13194.854 | 4 | 0.489 | F0.05=6.390 | |
间距(C) | 2704.561 | 4 | 0.100 | F0.05=6.390 | |
极板(D) | 16311.919 | 4 | 0.999 | F0.05=6.390 |
因素 | 指标 | ||||
---|---|---|---|---|---|
离差平方和 | 自由度 | F比 | F临界值 | 显著性 | |
硬度(A) | 417991.593 | 4 | 13.855 | F0.01=16.000 | * |
电压(B) | 40197.527 | 4 | 1.332 | F0.05=6.390 | — |
间距(C) | 13683.738 | 4 | 0.454 | F0.05=6.390 | |
极板(D) | 14331.065 | 4 | 0.475 | F0.05=6.390 | |
频率(E) | 8215.085 | 4 | 0.272 | F0.05=6.390 |
Table 11 HF power variance analysis
因素 | 指标 | ||||
---|---|---|---|---|---|
离差平方和 | 自由度 | F比 | F临界值 | 显著性 | |
硬度(A) | 417991.593 | 4 | 13.855 | F0.01=16.000 | * |
电压(B) | 40197.527 | 4 | 1.332 | F0.05=6.390 | — |
间距(C) | 13683.738 | 4 | 0.454 | F0.05=6.390 | |
极板(D) | 14331.065 | 4 | 0.475 | F0.05=6.390 | |
频率(E) | 8215.085 | 4 | 0.272 | F0.05=6.390 |
1 | Wu Y, Zhao H, Zhang C, et al. Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test[J]. Energy, 2018, 151: 79-93. |
2 | Yu Y, Jin H, Meng P, et al. Electrochemical water softening using air-scoured washing for scale detachment[J]. Separation and Purification Technology, 2018, 191: 216-224. |
3 | Zarga Y , Ben Boubaker H B, Ghaffour N , et al. Study of calcium carbonate and sulfate co-precipitation[J]. Chemical Engineering Science, 2013, 96(Complete): 33-41. |
4 | Nebot E, Casanueva J F, Casanueva T, et al. In situ experimental study for the optimization of chlorine dosage in seawater cooling systems[J]. Applied Thermal Engineering, 2006, 26(16): 1893-1900. |
5 | Zhi S , Zhang S . A novel combined electrochemical system for hardness removal[J]. Desalination, 2014, 349: 68-72. |
6 | Zeppenfeld K. Electrochemical removal of calcium and magnesium ions from aqueous solutions[J]. Desalination, 2011, 277(1/2/3): 99-105. |
7 | Brastad K S, He Z. Water softening using microbial desalination cell technology[J]. Desalination, 2013, 309: 32-37. |
8 | Janssen L J J, Koene L. The role of electrochemistry and electrochemical technology in environmental protection[J]. Chemical Engineering Journal, 2002, 85(2/3): 137-146. |
9 | Hu J, Fang Z, Jiang X, et al. Membrane-free electrodeionization using strong-type resins for high purity water production[J]. Separation and Purification Technology, 2015, 144: 90-96. |
10 | Shen X, Li T, Jiang X, et al. Desalination of water with high conductivity using membrane-free electrodeionization[J]. Separation and Purification Technology, 2014, 128: 39-44. |
11 | Rukapan W, Khananthai B, Chiemchaisri C, et al. Short- and long-term fouling characteristics of reverse osmosis membrane at full scale leachate treatment plant[J]. Water Science and Technology, 2012, 65(1): 127-134. |
12 | Hasson D, Sidorenko G, Semiat R. Calcium carbonate hardness removal by a novel electrochemical seeds system[J]. Desalination, 2010, 263(1/2/3): 285-289. |
13 | Gabrielli C, Maurin G, Perrot H, et al. Investigation of electrochemical calcareous scaling: potentiostatic current-and mass-time transients[J]. Journal of Electroanalytical Chemistry, 2002, 538: 133-143. |
14 | Hasson D, Lumelsky V, Greenberg G, et al. Development of the electrochemical scale removal technique for desalination applications[J]. Desalination, 2008, 230(1/2/3): 329-342. |
15 | Mat M D, Aldas K, Ilegbusi O J. A two-phase flow model for hydrogen evolution in an electrochemical cell[J]. International Journal of Hydrogen Energy, 2004, 29(10): 1015-1023. |
16 | Hasson D, Sidorenko G, Semiat R. Low electrode area electrochemical scale removal system[J]. Desalination and Water Treatment, 2011, 31(1/2/3): 35-41. |
17 | Zhang G, Qiu Y, Yang X, et al. Electrolytic treatment of industrial circulating cooling water using titanium–ruthenium–iridium anode and stainless steel cathode[J]. Desalination and Water Treatment, 2015, 56(4): 905-911. |
18 | 曾敏, 徐文彬, 陈涵毅, 等.方波脉冲低压阻垢技术的试验研究[J]. 广东化工, 2006, 33(1): 39-41. |
Zeng M, Xu W B, Chen H Y, et al. Study on the square-wave low-voltaged pulse anti-scaling technology[J]. Guangdong Chemical Industry, 2006, 33(1): 39-41. | |
19 | 林美强, 宋卫锋, 朱又春, 等. 三角波脉冲低压阻垢技术的试验研究[J]. 清洗世界, 2004, 20(2): 1-6. |
Lin M Q, Song W F, Zhu Y C, et al. Study on the triangular-wave low-voltaged pulse anti-scaling technology[J]. Cleaning World, 2004, 20(2): 1-6. | |
20 | 宋卫锋, 朱又春, 肖云开, 等. 低压脉冲阻垢技术的试验研究[J]. 工业水处理, 2003, 23(5): 21-23. |
Song W F, Zhu Y C, Xiao Y K, et al.Study on the low-voltaged impulse anti-scaling technology[J]. Industrial Water Treatment, 2003, 23(5): 21-23. | |
21 | Wu Y, Zhao H, Zhang C, et al. Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test[J]. Energy, 2018, 151: 79-93. |
22 | Yu Y, Jin H, Jin X, et al. Current pulsated electrochemical precipitation for water softening[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6585-6593. |
23 | Wang B H, Jin Y, Luo Y G. Parametric optimization of EQ6110HEV hybrid electric bus based on orthogonal experiment design[J]. International Journal of Automotive Technology, 2010, 11(1): 119-125. |
24 | Zhong W, Deng Y, Machado J A T, et al. Strength prediction of similar materials to ionic rare earth ores based on orthogonal test and back propagation neural network[J]. Soft Computing, 2019, 23(19): 9429-9437. |
25 | Zaslavschi I, Shemer H, Hasson D, et al. Electrochemical CaCO3 scale removal with a bipolar membrane system[J]. Journal of Membrane Science, 2013, 445: 88-95. |
26 | Gabrielli C, Maurin G, Francy-Chausson H, et al. Electrochemical water softening: principle and application[J]. Desalination, 2006, 201(1/2/3): 150-163. |
27 | 延卫, 徐浩, 汤成莉. 水系统的积垢及其物理控制技术[J]. 净水技术, 2008, (3): 12-16. |
Yan W, Xu H, Tang C L, et al. Scale and its physical prevention in water systems[J]. Water Purification Technology, 2008, (3): 12-16. | |
28 | 王庆慧, 袁帅, 卫园梦, 等. 基于交互正交实验的玉米淀粉粉尘云最低着火温度的影响因素研究[J]. 爆炸与冲击, 2019, 39(5): 146-152. |
Wang Q H, Yuan S, Wei Y M, et al. On factors affecting minimum ignition temperature of corn starch dust cloud based on interactive orthogonal experiment[J]. Explosion and Shock Waves, 2019, 39(5): 146-152. | |
29 | 刘文卿. 实验设计 [M]. 北京: 清华大学出版社, 2005: 71-76. |
Liu W Q. Design of Experiments [M]. Beijing: Tsinghua University Press, 2005: 71-76. | |
30 | 徐浩, 延卫, 汤成莉.水垢的电化学去除工艺与机理研究[J]. 西安交通大学学报, 2009, 43(5): 104-108. |
Xu H, Yan W, Tang C L. Technology and mechanism of water scale removal by electrochemical method[J]. Journal of Xian Jiaotong University, 2009, 43(5): 104-108. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[4] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[5] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[6] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[7] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[8] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[9] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[10] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[11] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[12] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[13] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[14] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[15] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||