CIESC Journal ›› 2020, Vol. 71 ›› Issue (7): 3000-3008.DOI: 10.11949/0438-1157.20191354
• Thermodynamics • Previous Articles Next Articles
Received:
2019-11-08
Revised:
2020-04-06
Online:
2020-07-05
Published:
2020-07-05
Contact:
Hong ZHANG
通讯作者:
张红
作者简介:
张红(1979—),女,博士,讲师,基金资助:
CLC Number:
Hong ZHANG, Liu TANG. Study on reaction mechanism of p-type dopant Cp2Mg in MOCVD gas phase[J]. CIESC Journal, 2020, 71(7): 3000-3008.
张红, 唐留. p型掺杂剂Cp2Mg在MOCVD气相中的反应机理研究[J]. 化工学报, 2020, 71(7): 3000-3008.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Schematic diagram of the chemical reaction pathway of Cp2Mg in the MOCVD gas-phase process, which is mainly composed of the adduct reaction path (shown by the red arrow) and the hydrogenolysis reaction path (shown by the blue arrow), where the dotted line indicates the theoretically impossible reactions
Cp2Mg | |||||
---|---|---|---|---|---|
Cp-Mg-Cp | Mg-Cp/ ? | Mg-C/ ? | C—C/ ? | 方法 | 文献 |
180.0° | 2.068 | 2.366 | 1.424 | B3LYP/6-31G(d) | 本文 |
— | 2.008 | 2.339 | 1.423 | El-diff | [ |
— | 1.977 | 2.304 | 1.390 | X-ray | [ |
— | 2.031 | 2.361 | 1.416 | B3LYP/6-31 | [ |
178.7° | 2.030 | — | — | B3LYP/6-31G(d) | [ |
Cp2Mg∶NH3 | |||||
Cp(1)-Mg-Cp(2) | Mg-Cp(1)/Cp(2) / ? | Mg-N/ ? | 方法 | 文献 | |
155.3° | 2.118/2.561 | 2.149 | B3LYP/6-31G(d) | 本文 | |
157.3° | 2.095/2.565 | 2.149 | B3LYP/6-31G(d) | [ | |
Cp2Mg∶(NH3)2 | |||||
Cp(1)-Mg-Cp(2) | Mg-Cp(1)/Cp(2) / ? | N(1)-Mg-N(2) / ? | Mg-N(1)/N(2) / ? | 方法 | 文献 |
143.8° | 2.821/2.102 | 93.0° | 2.171/2.210 | B3LYP/6-31G(d) | 本文 |
144.1° | 2.789/2.175 | 92.9° | 2.170/2.210 | B3LYP/6-31G(d) | [ |
Table 1 Optimized bond lengths and angles of the main species
Cp2Mg | |||||
---|---|---|---|---|---|
Cp-Mg-Cp | Mg-Cp/ ? | Mg-C/ ? | C—C/ ? | 方法 | 文献 |
180.0° | 2.068 | 2.366 | 1.424 | B3LYP/6-31G(d) | 本文 |
— | 2.008 | 2.339 | 1.423 | El-diff | [ |
— | 1.977 | 2.304 | 1.390 | X-ray | [ |
— | 2.031 | 2.361 | 1.416 | B3LYP/6-31 | [ |
178.7° | 2.030 | — | — | B3LYP/6-31G(d) | [ |
Cp2Mg∶NH3 | |||||
Cp(1)-Mg-Cp(2) | Mg-Cp(1)/Cp(2) / ? | Mg-N/ ? | 方法 | 文献 | |
155.3° | 2.118/2.561 | 2.149 | B3LYP/6-31G(d) | 本文 | |
157.3° | 2.095/2.565 | 2.149 | B3LYP/6-31G(d) | [ | |
Cp2Mg∶(NH3)2 | |||||
Cp(1)-Mg-Cp(2) | Mg-Cp(1)/Cp(2) / ? | N(1)-Mg-N(2) / ? | Mg-N(1)/N(2) / ? | 方法 | 文献 |
143.8° | 2.821/2.102 | 93.0° | 2.171/2.210 | B3LYP/6-31G(d) | 本文 |
144.1° | 2.789/2.175 | 92.9° | 2.170/2.210 | B3LYP/6-31G(d) | [ |
温度/K | G /(kJ/mol) | |||
---|---|---|---|---|
Cp2Mg | Cp2MgH | CpMgH | MgH | |
293.15 | 0 | 7.38 | 0 | 257.45 |
573.15 | 0 | 21.30 | 0 | 208.76 |
873.15 | 0 | 35.04 | 0 | 157.15 |
1273.15 | 0 | 51.88 | 0 | 89.66 |
1473.15 | 0 | 59.75 | 0 | 56.40 |
Table 2 Calculated relative Gibbs free energy at different temperatures
温度/K | G /(kJ/mol) | |||
---|---|---|---|---|
Cp2Mg | Cp2MgH | CpMgH | MgH | |
293.15 | 0 | 7.38 | 0 | 257.45 |
573.15 | 0 | 21.30 | 0 | 208.76 |
873.15 | 0 | 35.04 | 0 | 157.15 |
1273.15 | 0 | 51.88 | 0 | 89.66 |
1473.15 | 0 | 59.75 | 0 | 56.40 |
1 | Safvi S A, Redwing J M, Tischler M A, et al. GaN growth by metallorganic vapor phase epitaxy[J]. Journal of the Electrochemical Society, 1997, 144(5): 1789-1796. |
2 | Creighton J R, Breiland W G, Coltrin M E, et al. Gas-phase nanoparticle formation during AlGaN metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2002, 81(14): 2626-2628. |
3 | Creighton J R, Wang G T, Breiland W G, et al. Nature of the parasitic chemistry during AlGaInN OMVPE[J]. Journal of Crystal Growth, 2004, 261(2/3): 204-213. |
4 | Lundin W V, Nikolaev A E, Rozhavskaya M M, et al. Fast AlGaN growth in a whole composition range in planetary reactor[J]. Journal of Crystal Growth, 2013, 370: 7-11. |
5 | Zhao D G, Liu Z S, Zhu J J, et al. Effect of Al incorporation on the AlGaN growth by metalorganic chemical vapor deposition[J]. Applied Surface Science, 2006, 253(5): 2452-2455. |
6 | Cherns D, Sahonta S L, Liu R, et al. The generation of misfit dislocations in facet-controlled growth of AlGaN∕GaN films[J]. Applied Physics Letters, 2004, 85(21): 4923-4925. |
7 | Detchprohm T, Sano S, Mochizuki S, et al. Growth mechanism and characterization of low-dislocation-density AlGaN single crystals grown on periodically grooved substrates[J]. Physica Status Solidi (A), 2001, 188(2): 799-802. |
8 | Keller S, Denbaars S P. Metalorganic chemical vapor deposition of group Ⅲ nitrides-a discussion of critical issues[J]. Journal of Crystal Growth, 2003, 248: 479-486. |
9 | Li D B, Jiang K, Sun X J, et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 2018, 10(1): 43-110. |
10 | Nam K B, Nakarmi M L, Li J, et al. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence[J]. Applied Physics Letters, 2003, 83(5): 878-880. |
11 | Nakamura S, Iwasa N, Senoh M, et al. Hole compensation mechanism of p-type GaN films[J]. Japanese Journal of Applied Physics, 1992, 31(A): 1258-1266. |
12 | Götz W, Johnson N M, Walker J, et al. Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 1996, 68(5): 667-669. |
13 | Wen T C, Lee S C, Lee W I, et al. Activation of p-type GaN in a pure oxygen ambient[J]. Japanese Journal of Applied Physics, 2001, 40(B): L495-L497. |
14 | Götz W, Johnson N M, Walker J, et al. Hydrogen passivation of Mg acceptors in GaN grown by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 1995, 67(18): 2666-2668. |
15 | Hull B A, Mohney S E, Venugopalan H S, et al. Influence of oxygen on the activation of p-type GaN[J]. Applied Physics Letters, 2000, 76(16): 2271-2273. |
16 | Clerjaud B, Cte D, Lebkiri A, et al. Infrared spectroscopy of Mg-H local vibrational mode in GaN with polarized light[J]. Physical Review B, 2000, 61(12): 8238-8241. |
17 | Götz W, Johnson N M, Bour D P, et al. Local vibrational modes of the Mg–H acceptor complex in GaN[J]. Applied Physics Letters, 1996, 69(24): 3725-3727. |
18 | Sheu J K, Chi G C. The doping process and dopant characteristics of GaN[J]. Journal of Physics: Condensed Matter, 2002, 14(22): R657-R702. |
19 | Matlock D M, Zvanut M E, Wang H, et al. The effects of oxygen, nitrogen, and hydrogen annealing on Mg acceptors in GaN as monitored by electron paramagnetic resonance spectroscopy[J]. Journal of Electronic Materials, 2005, 34(1): 34-39. |
20 | Zvanut M E, Matlock D M, Henry R L, et al. Thermal activation of Mg-doped GaN as monitored by electron paramagnetic resonance spectroscopy[J]. Journal of Applied Physics, 2004, 95(4): 1884-1887. |
21 | Amano H, Kito M, Hiramatsu K, et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)[J]. Japanese Journal of Applied Physics, 1989, 28(Part 2): L2112-L2114. |
22 | Nakamura S, Mukai T, Senoh M, et al. Thermal annealing effects on p-type Mg-doped GaN films[J]. Japanese Journal of Applied Physics, 1992, 31(2B): L139-L142. |
23 | Tokunaga H, Ubukata A, Yano Y, et al. Effects of growth pressure on AlGaN and Mg-doped GaN grown using multiwafer metal organic vapor phase epitaxy system[J]. Journal of Crystal Growth, 2004, 272(1/2/3/4): 348-352. |
24 | Zvanut M E, Sunay U R, Dashdorj J, et al. Mg-hydrogen interaction in AlGaN alloys[J]. Proceedings of SPIE the International Society for Optical Engineering, 2012, 8262: 82620L-1-6. |
25 | Neugebauer J, van de Walle C G. Hydrogen in GaN: novel aspects of a common impurity[J]. Physical Review Letters, 1995, 75(24): 4452-4455. |
26 | Yuan C. Investigation of n- and p-type doping of GaN during epitaxial growth in a mass production scale multiwafer-rotating-disk reactor[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1995, 13(5): 2075-2080. |
27 | Pearton S J, Lee J W, Yuan C. Minority-carrier-enhanced reactivation of hydrogen-passivated Mg in GaN[J]. Applied Physics Letters, 1996, 68(19): 2690-2692. |
28 | Haffouz S, Beaumont B, Leroux M, et al. P-doping of GaN by MOVPE[J]. MRS Internet Journal of Nitride Semiconductor Research, 1997, 2(33): 37-41. |
29 | Wang G T, Creighton J R. Complex formation between magnesocene (MgCp2) and NH3: implications for p-type doping of group Ⅲ nitrides and the Mg memory effect[J]. The Journal of Physical Chemistry A, 2004, 108(22): 4873-4877. |
30 | Moscatelli D, Cavallotti C. Theoretical investigation of the gas-phase kinetics active during the GaN MOVPE[J]. The Journal of Physical Chemistry A, 2007, 111(21): 4620-4631. |
31 | Yoshida M, Watanabe H, Uesugi F. Mass spectrometric study of Ga(CH3)3 and Ga(C2H5)3 decomposition reaction in H2 and N2[J]. Journal of the Electrochemical Society, 1985, 132(3): 677-679. |
32 | Zhang X J, Yang J C. Study on the structures and properties of CeSin (n = 1 - 8) with density functional theory[J]. Journal of Advances in Physical Chemistry, 2014, 3(4): 12-18. |
33 | Lee C T, Yang W T, Parr R G. Development of the colic-salvetti correlation-energy into a functional of the electron density[J]. Physal Review B, 1988, 37(2): 785-789. |
34 | Becke A D. Density-functional thermochemistry (Ⅲ). The role of exact exchange[J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652. |
35 | Canneaux S, Bohr F, Henon E. KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results[J]. Journal of Computational Chemistry, 2013, 35(1): 82-93. |
36 | Simka H S. Application of quantum chemistry calculations in modeling chemical vapor deposition processes[D]. Boston: MIT, 1998. |
37 | Haaland A, Lusztyk J, Brunvoll J, et al. On the molecular structure of dicyclopentadienylmagnesium[J]. Journal of Organometallic Chemistry, 1975, 85(3): 279-285. |
38 | Andersen R A, Boncella J M, Burns C J, et al. The molecular structures of bis(pentamethylcyclopentadienyl)-calcium and-ytterbium in the gas phase: two bent metallocenes[J]. Journal of Organometallic Chemistry, 1986, 312(3): C49-C52. |
39 | Blom R, Faegri K, Volden H V. Molecular structures of alkaline earth-metal metallocenes: electron diffraction and ab initio investigations[J]. Organometallics, 1990, 9(2): 372-379. |
40 | Bünder W, Weiss E. Verfeinerung der kristallstruktur von dicyclopentadienylkobalt, (η5-C5H5)2Co[J]. Journal of Organometallic Chemistry, 1975, 92(1): 65-68. |
41 | Jr Faegri K, Almlöf J, Lüth H P. The geometry and bonding of magnesocene. An ab-initio MO-LCAO investigation[J]. Journal of Organometallic Chemistry, 1983, 249(2): 303-313. |
[1] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[2] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[3] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
[4] | Xiaqi YU, Ge FENG, Jinyan ZHAO, Jiayuan LI, Shengwei DENG, Jingnan ZHENG, Wenwen LI, Yaqiu WANG, Lan SHEN, Xu LIU, Weiwei XU, Jianguo WANG, Shibin WANG, Zihao YAO, Chengli MAO. A first-principles study of the interaction between TDI-TMP-T313 and AP [J]. CIESC Journal, 2022, 73(8): 3511-3517. |
[5] | Xiaoya LIU, Jinchao WANG, Ying LIU, Jinghuan MA. Progress in modified preparation and catalytic mechanism of nanocatalysts for hydrogen production from hydrous hydrazine [J]. CIESC Journal, 2022, 73(7): 2819-2834. |
[6] | Xiaokun HE, Yuan XUE, Ran ZUO. Quantum chemistry study on gas reaction path in InN MOCVD growth [J]. CIESC Journal, 2022, 73(12): 5638-5647. |
[7] | Shenggui MA, Bowen TIAN, Yuwei ZHOU, Lin CHEN, Xia JIANG, Tao GAO. DFT study of adsorption of H2S on N-doped Stone-Wales defected graphene [J]. CIESC Journal, 2021, 72(9): 4496-4503. |
[8] | YE Kai, LIU Xianghua, JIANG Yue, YU Ying, ZHAO Yafei, ZHUANG Ye, ZHENG Jinbao, CHEN Binghui. Combing low-temperature plasma with CeO2/13X for toluene degradation [J]. CIESC Journal, 2021, 72(7): 3706-3715. |
[9] | LIANG-SU Zhuocheng, JI Guoxun, SUN Xinli, WANG Bo, ZHANG Shitong, DAI Xing. Theoretical study on mechanism of silicon heteroatoms to improve the complexation ability of crown ethers to lithium ions [J]. CIESC Journal, 2021, 72(6): 3149-3159. |
[10] | ZHU Qianqian, JIN Haibo, GUO Xiaoyan, HE Guangxiang, MA Lei, ZHANG Rongyue, GU Qingyang, YANG Suohe. Study on synthesis of ε-caprolactone with MgO catalysis by Baeyer-Villiger green oxidation of cyclohexanone in H2O2/acetonitrile system [J]. CIESC Journal, 2021, 72(5): 2638-2646. |
[11] | WANG Qin, XU Huijin, HAN Xingchao, ZHAO Changying. First principle calculation of thermochemical heat storage with MgO/Mg(OH)2 reaction [J]. CIESC Journal, 2021, 72(3): 1242-1252. |
[12] | Wenxuan LIU, Jiayi ZHANG, Qi LU, Haochen ZHANG. Investigation of electroreduction of carbon dioxide into formate based on machine learning [J]. CIESC Journal, 2021, 72(12): 6262-6273. |
[13] | Daqun CAO,Yan JIN,Hang CHEN,Jianguo YU. Phase equilibria determination and solubility calculation of the quaternary system CaCl2-SrCl2-BaCl2-H2O at 338.15 K [J]. CIESC Journal, 2021, 72(10): 5028-5039. |
[14] | Gang WANG,Xuezhi DUAN,Weikang YUAN,Xinggui ZHOU. Mechanistic insights into catalytic isomerization of propylene oxide over TS-1 [J]. CIESC Journal, 2021, 72(10): 5150-5158. |
[15] | Wei SUN, Ran ZUO. Study on adsorption and diffusion of MMAl on AlN(0001)-Al surface covered with NH2/H [J]. CIESC Journal, 2020, 71(7): 3213-3219. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||