CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1667-1674.DOI: 10.11949/0438-1157.20200724
• Energy and environmental engineering • Previous Articles Next Articles
TANG Zhiqiang1,2(),SHI Yu1,2,ZHANG Liang1,2(),LI Jun1,2,FU Qian1,2,ZHU Xun1,2,LIAO Qiang1,2
Received:
2020-06-08
Revised:
2020-07-15
Online:
2021-03-05
Published:
2021-03-05
Contact:
ZHANG Liang
唐志强1,2(),石雨1,2,张亮1,2(),李俊1,2,付乾1,2,朱恂1,2,廖强1,2
通讯作者:
张亮
作者简介:
唐志强(1995—),男,硕士研究生,基金资助:
CLC Number:
TANG Zhiqiang, SHI Yu, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Effects of composite electrodes with different substrate materials on electricity generation of thermal regenerative ammonia-based batteries[J]. CIESC Journal, 2021, 72(3): 1667-1674.
唐志强, 石雨, 张亮, 李俊, 付乾, 朱恂, 廖强. 不同基底材料复合电极对热再生氨电池产电性能的影响[J]. 化工学报, 2021, 72(3): 1667-1674.
Add to citation manager EndNote|Ris|BibTeX
电极种类 | 镀铜后电极质量/g | 总孔隙面积/(m2/g) | 总表面积/m2 |
---|---|---|---|
碳纸 | 0.48 | 27.968 | 13.425 |
碳布 | 0.558 | 0.283 | 0.158 |
泡沫镍 | 1.001 | 0.055 | 0.055 |
不锈钢网 | 0.7 | 0.002 | 0.0014 |
Table 1 Mercury injection tests of the composite electrodes
电极种类 | 镀铜后电极质量/g | 总孔隙面积/(m2/g) | 总表面积/m2 |
---|---|---|---|
碳纸 | 0.48 | 27.968 | 13.425 |
碳布 | 0.558 | 0.283 | 0.158 |
泡沫镍 | 1.001 | 0.055 | 0.055 |
不锈钢网 | 0.7 | 0.002 | 0.0014 |
Fig.5 Electricity generation (a), total charge and energy density (b), and coulombic efficiency (c) of TRABs composed of composite electrodes with different substrate materials
27 | 李彦翔, 张亮, 朱恂, 等. 传质对热可再生氨电池性能的影响[J]. 工程热物理学报, 2019, 40(3): 192-195. |
Li Y X, Zhang L, Zhu X, et al. Effect of mass transfer on the performance of thermally regenerative ammonia-based battery [J]. Journal of Engineering Thermophysics, 2019, 40(3): 668-671. | |
28 | Wang W G, Tian H, Shu G Q, et al. A bimetallic thermally regenerative ammonia-based battery for high power density and efficiently harvesting low-grade thermal energy [J]. Journal of Materials Chemistry A, 2019, 7(11): 5991-6000. |
29 | Zhang L, Li Y X, Zhu X, et al. Copper foam electrodes for increased power generation in thermally regenerative ammonia-based batteries for low-grade waste heat recovery [J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7408-7415. |
30 | Shi Y, Zhang L, Li J, et al. 3-D printed gradient porous composite electrodes improve anodic current distribution and performance in thermally regenerative flow battery for low-grade waste heat recovery [J]. Journal of Power Sources, 2020, 473: 228525. |
31 | 唐志强, 张亮, 朱恂, 等. 不同Cu2+浓度下热再生氨电池产电及Cu2+去除特性 [J]. 化工学报, 2019, 70(12): 4804-4810. |
Tang Z Q, Zhang L, Zhu X, et al. Effect of Cu2+ concentration in cathode on power generation and copper removal of thermally regenerative ammonia-based battery [J]. CIESC Journal, 2019, 70(12): 4804-4810. | |
32 | Vicari F, D'Angelo A, Kouko Y, et al. On the regeneration of thermally regenerative ammonia batteries [J]. Journal of Applied Electrochemistry, 2018, 48(12): 1381-1388. |
1 | Lu H Y, Price L, Zhang Q. Capturing the invisible resource: analysis of waste heat potential in Chinese industry [J]. Applied Energy Barking Then Oxford, 2016, 161: 497-511. |
2 | Jouhara H, Khordehgah N, Almahmoud S, et al. Waste heat recovery technologies and applications [J]. Thermal Science & Engineering Progress, 2018, 6: 268-289 |
3 | Woolley E, Luo Y, Simeone A. Industrial waste heat recovery: a systematic approach [J]. Sustainable Energy Technologies and Assessments, 2018, 29: 50-59. |
4 | 童力, 胡松涛, 罗思义. 高炉渣余热回收协同转化生物质制氢 [J]. 化工学报, 2014, 65(9): 3634-3639. |
Tong L, Hu S T, Luo S Y. Waste heat recovery of blast furnace slag and utilization for production of hydrogen from biomass transformation [J]. CIESC Journal, 2014, 65(9): 3634-3639. | |
33 | Zhang Y S, Zhang L, Li J, et al. Performance of a thermally regenerative ammonia-based flow battery with 3D porous electrodes: effect of reactor and electrode design [J]. Electrochimica Acta, 2020, 331: 135442. |
5 | 刘超, 徐进良. 一种新型天然气锅炉烟气余热回收系统 [J]. 化工学报, 2013, 64(11): 4223-4230. |
Liu C, Xu J L. A novel heat recovery system for flue gas from natural gas boiler [J]. 2013, 64(11): 4223-4230. | |
6 | Forman C, Muritala I K, Pardemann R, et al. Estimating the global waste heat potential [J]. Renewable & Sustainable Energy Reviews, 2016, 57: 1568-1579. |
7 | van de Bor D M, Ferreira C A I, Kiss A A. Low grade waste heat recovery using heat pumps and power cycles [J]. Energy, 2015, 89: 864-873. |
8 | Garone S, Toppi T, Guerra M, et al. A water-ammonia heat transformer to upgrade low-temperature waste heat [J]. Applied Thermal Engineering, 2017, 127: 748-757. |
9 | Salez T J, Huang B T, Rietjens M, et al. Can charged colloidal particles increase the thermoelectric energy conversion efficiency? [J]. Physical Chemistry Chemical Physics, 2017, 19(14): 9409-9416. |
10 | Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J]. Science, 2008, 321(5895): 1457-1461. |
11 | 晏维, 邱国跃, 袁旭峰. 半导体温差发电技术应用及研究综述 [J]. 电源技术, 2016, 40(8): 1737-1740 |
Yan W, Qiu G Y, Yuan X F. Application and research of semiconductor thermoelectric power generation technology [J]. Chinese Journal of Power Sources, 2016, 40(8): 1737-1740. | |
12 | Gayner C, Kar K K. Recent advances in thermoelectric materials [J]. Progress in Materials Science, 2016, 83: 330-382. |
13 | Straub A P, Deshmukh A, Elimelech M. Pressure-retarded osmosis for power generation from salinity gradients: is it viable? [J]. Energy & Environmental Science, 2016, 9(1): 31-48. |
14 | Abraham T J, Macfarlane D R, Baughman R H, et al. Towards ionic liquid-based thermoelectrochemical cells for the harvesting of thermal energy [J]. Electrochimica Acta, 2013, 113: 87-93. |
15 | Rahimi, M, Straub A P, Zhang F, et al. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity [J]. Energy & Environmental Science, 2018, 11(2): 276-285 |
16 | Straub A P, Yip N Y, Lin S H, et al. Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes [J]. Nature Energy, 2016, 1: 16090. |
17 | Hao F, Qiu P F, Tang Y S, et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300℃ [J]. Energy & Environmental Science, 2016, 9(10): 3120-3127. |
18 | Zhu X P, Rahimi M, Gorski C A, et al. A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat [J]. ChemSusChem, 2016, 9(8): 873-879. |
19 | Rahimi M, Zhu L, Kowalski K L, et al. Improved electrical power production of thermally regenerative batteries using a poly(phenylene oxide) based anion exchange membrane [J]. Journal of Power Sources, 2017, 342: 956-963. |
20 | Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488(7411): 294-303. |
21 | Zhang F, Liu J, Yang W L, et al. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power [J]. Energy & Environmental Science, 2015, 8(1): 343-349. |
22 | Wang W G, Shu G Q, Tian H, et al. A numerical model for a thermally-regenerative ammonia-based flow battery using for low grade waste heat recovery [J]. Journal of Power Sources, 2018, 388: 32-44. |
23 | Zhang F, Labarge N, Yang W L, et al. Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures [J]. ChemSusChem, 2015, 8(6): 1043-1048. |
24 | Rahimi M, Kim T, Gorski C A, et al. A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity [J]. Journal of Power Sources, 2018, 373: 95-102. |
25 | Rahimi M, D′Angelo A, Gorski C A, et al. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery [J]. Journal of Power Sources, 2017, 351: 45-50. |
26 | Palakkal V M, Nguyen T, Nguyen P, et al. High power thermally regenerative ammonia-copper redox flow battery enabled by a zero gap cell design, low-resistant membranes, and electrode coatings [J]. ACS Applied Energy Materials, 2020, 3(5): 4787-4798. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[4] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[5] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[6] | Yang HE, Senhu GAO, Qingyun WU, Mingli ZHANG, Tao LONG, Pei NIU, Jinghui GAO, Yingqi MENG. Numerical study on heat and mass transfer characteristics of straight slotted fins under wet conditions [J]. CIESC Journal, 2023, 74(3): 1073-1081. |
[7] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[8] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[9] | Hao ZHANG, Ziyue WANG, Yujie CHENG, Xiaohui HE, Hongbing JI. Progress in the mass production of single-atom catalysts [J]. CIESC Journal, 2023, 74(1): 276-289. |
[10] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[11] | Kaiyue WANG, Yongli MA, Chen LI, Mingyan LIU. Gas-liquid mass transfer coefficients in the gas-liquid-solid micro-fluidized beds [J]. CIESC Journal, 2022, 73(8): 3529-3540. |
[12] | Yuelin WANG, Wei CHAO, Xiaocheng LAN, Zhipeng MO, Shuhuan TONG, Tiefeng WANG. Review of ethanol production via biological syngas fermentation [J]. CIESC Journal, 2022, 73(8): 3448-3460. |
[13] | Zhenyu LIU. Origin of low productivity of underground coal gasification: diffusion and reaction in stagnant boundary layer and gasification tunnel [J]. CIESC Journal, 2022, 73(8): 3299-3306. |
[14] | Lin WEI, Jian GUO, Zihao LIAO, Dafalla Ahmed Mohmed, Fangming JIANG. Influence of air flow rate on the performance of air cooled hydrogen fuel cell stack [J]. CIESC Journal, 2022, 73(7): 3222-3231. |
[15] | Wenxiao XIE, Shengkun JIA, Huishu ZHANG, Yiqing LUO, Xigang YUAN. Investigation on mass transfer behavior between floating bubbles and liquid in confined space [J]. CIESC Journal, 2022, 73(7): 2902-2911. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||