CIESC Journal ›› 2022, Vol. 73 ›› Issue (3): 975-989.DOI: 10.11949/0438-1157.20211348
• Reviews and monographs • Previous Articles Next Articles
Qi WANG(),Kuo FANG(),Conghui HE,Kaijun WANG()
Received:
2021-09-17
Revised:
2021-11-25
Online:
2021-12-08
Published:
2022-03-15
Contact:
Kuo FANG,Kaijun WANG
通讯作者:
房阔,王凯军
作者简介:
王祺(1996—),女,硕士研究生,基金资助:
CLC Number:
Qi WANG, Kuo FANG, Conghui HE, Kaijun WANG. Recent development and future challenges of flow-electrode capacitive deionization[J]. CIESC Journal, 2022, 73(3): 975-989.
王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989.
Add to citation manager EndNote|Ris|BibTeX
1 | Fang K, Gong H, He W Y, et al. Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization[J]. Chemical Engineering Journal, 2018, 348: 301-309. |
2 | Huang X, He D, Tang W W, et al. Investigation of pH-dependent phosphate removal from wastewaters by membrane capacitive deionization (MCDI)[J]. Environmental Science: Water Research & Technology, 2017, 3(5): 875-882. |
3 | Kim D I, Dorji P, Gwak G, et al. Reuse of municipal wastewater via membrane capacitive deionization using ion-selective polymer-coated carbon electrodes in pilot-scale[J]. Chemical Engineering Journal, 2019, 372: 241-250. |
4 | 卞维柏, 潘建明. 电吸附技术及吸附电极材料研究进展[J]. 化工学报, 2021, 72(1): 304-319. |
Bian W B, Pan J M. Research progress on electro-sorption technology and fabrication of adsorptive electrode materials[J]. CIESC Journal, 2021, 72(1): 304-319. | |
5 | 贾雪茹, 胡程月, 王昭玉, 等. 电容去离子技术在水处理领域的研究进展[J]. 四川化工, 2019, 22(4): 25-28. |
Jia X R, Hu C Y, Wang Z Y, et al. Research progress of capacitance deionization technology in the field of water treatment[J]. Sichuan Chemical Industry, 2019, 22(4): 25-28. | |
6 | Blair J W, Murphy G W. Electrochemical demineralization of water with porous electrodes of large surface area[M]//Advances in Chemistry. Washington, D. C.: American Chemical Society, 1960: 206-223. |
7 | 沈彤. 电容去离子脱盐性能增强技术研究[D]. 大连: 大连海事大学, 2020. |
Shen T. Improved technology on capacitive deionization for desalination performance[D]. Dalian: Dalian Maritime University, 2020. | |
8 | Zapata-Sierra A, Cascajares M, Alcayde A, et al. Worldwide research trends on desalination[J]. Desalination, 2021, 519: 115305. |
9 | Jeon S I, Park H R, Yeo J G, et al. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J]. Energy & Environmental Science, 2013, 6(5): 1471. |
10 | Wang J, Shi Z L, Fang J, et al. The optimized flow-electrode capacitive deionization (FCDI) performance by ZIF-8 derived nanoporous carbon polyhedron[J]. Separation and Purification Technology, 2022, 281: 119345. |
11 | Epshtein A, Nir O, Monat L, et al. Treatment of acidic wastewater via fluoride ions removal by SiO2 particles followed by phosphate ions recovery using flow-electrode capacitive deionization[J]. Chemical Engineering Journal, 2020, 400: 125892. |
12 | Fang K, He W Y, Peng F, et al. Ammonia recovery from concentrated solution by designing novel stacked FCDI cell[J]. Separation and Purification Technology, 2020, 250: 117066. |
13 | Luo K Y, Niu Q Y, Zhu Y, et al. Desalination behavior and performance of flow-electrode capacitive deionization under various operational modes[J]. Chemical Engineering Journal, 2020, 389: 124051. |
14 | Bian Y H, Chen X, Lu L, et al. Concurrent nitrogen and phosphorus recovery using flow-electrode capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7844-7850. |
15 | Ma J X, Ma J J, Zhang C Y, et al. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration[J]. Water Research, 2020, 168: 115186. |
16 | Shin Y U, Lim J, Boo C, et al. Improving the feasibility and applicability of flow-electrode capacitive deionization (FCDI): review of process optimization and energy efficiency[J]. Desalination, 2021, 502: 114930. |
17 | Gendel Y, Rommerskirchen A K E, David O, et al. Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology[J]. Electrochemistry Communications, 2014, 46: 152-156. |
18 | Zhao X Y, Wei H X, Zhao H C, et al. Electrode materials for capacitive deionization: a review[J]. Journal of Electroanalytical Chemistry, 2020, 873: 114416. |
19 | Zhang C, Ma J, Wu L, et al. Flow electrode capacitive deionization (FCDI): recent developments, environmental applications, and future perspectives[J]. Environmental Science & Technology, 2021, 55(8): 4243-4267. |
20 | Park H R, Choi J, Yang S, et al. Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization[J]. RSC Advances, 2016, 6(74): 69720-69727. |
21 | Porada S, Weingarth D, Hamelers H V M, et al. Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation[J]. Journal of Materials Chemistry A, 2014, 2(24): 9313. |
22 | Fang K, Gong H, He W Y, et al. Revealing the intrinsic differences between static and flow electrode capacitive deionization by introducing semi-flow electrodes[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 362-372. |
23 | 吴阳春, 应迪文, 王亚林, 等. 电容脱盐技术及其在废水处理中的应用[J]. 水处理技术, 2019, 45(8): 1-6, 15. |
Wu Y C, Ying D W, Wang Y L, et al. Capacitive desalination technology and its application in wastewater treatment[J]. Technology of Water Treatment, 2019, 45(8): 1-6, 15. | |
24 | Zhang X D, Zuo K C, Zhang X R, et al. Selective ion separation by capacitive deionization (CDI) based technologies: a state-of-the-art review[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 243-257. |
25 | Porada S, Zhao R, van der Wal A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442. |
26 | AlMarzooqi F A, Al Ghaferi A A, Saadat I, et al. Application of capacitive deionisation in water desalination: a review[J]. Desalination, 2014, 342: 3-15. |
27 | 岳智帅. 钠离子插层电极的设计、结构调控及其脱盐性能研究[D]. 银川: 宁夏大学, 2019. |
Yue Z S. The investigation on sodium ion intercalation electrode: design structural control and capacitive deionization derformance[D]. Yinchuan: Ningxia University, 2019. | |
28 | 孙婧, 陆晓赟, 宋海欧, 等. 具有阴阳离子插入行为的电容去离子电极设计[J]. 化学通报, 2021, 84(5): 402-410. |
Sun J, Lu X Y, Song H O, et al. Design of capacitive deionization electrode with insertion of anions and cations[J]. Chemistry, 2021, 84(5): 402-410. | |
29 | Song X, Fang D Z, Huo S L, et al. Exceptional capacitive deionization desalination performance of hollow bowl-like carbon derived from MOFs in brackish water[J]. Separation and Purification Technology, 2021, 278: 119550. |
30 | Cho Y, Yoo C Y, Lee S W, et al. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes[J]. Water Research, 2019, 151: 252-259. |
31 | Xu Y, Duan F, Li Y P, et al. Enhanced desalination performance in asymmetric flow electrode capacitive deionization with nickel hexacyanoferrate and activated carbon electrodes[J]. Desalination, 2021, 514: 115172. |
32 | Xu B, Xu X T, Gao H L, et al. Electro-enhanced adsorption of ammonium ions by effective graphene-based electrode in capacitive deionization[J]. Separation and Purification Technology, 2020, 250: 117243. |
33 | Minh Phuoc N, Anh Thu Tran N, Minh Khoi T, et al. ZIF-67 metal-organic frameworks and CNTs-derived nanoporous carbon structures as novel electrodes for flow-electrode capacitive deionization[J]. Separation and Purification Technology, 2021, 277: 119466. |
34 | 高利军, 白思林, 梁苏岑, 等. ZIF衍生多孔碳纳米纤维用于高效电容去离子的研究[J]. 化工学报, 2020, 71(6): 2760-2767. |
Gao L J, Bai S L, Liang S C, et al. ZIF-derived porous carbon nanofibers for high-efficiency capacitive deionization [J]. CIESC Journal, 2020, 71(6): 2760-2767. | |
35 | Kyaw H H, Al-Mashaikhi S M, Myint M T Z, et al. Activated carbon derived from the date palm leaflets as multifunctional electrodes in capacitive deionization system[J]. Chemical Engineering and Processing - Process Intensification, 2021, 161: 108311. |
36 | Yang S, Park H R, Yoo J, et al. Plate-shaped graphite for improved performance of flow-electrode capacitive deionization[J]. Journal of the Electrochemical Society, 2017, 164(13): E480-E488. |
37 | Hatzell K B, Hatzell M C, Cook K M, et al. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization[J]. Environmental Science & Technology, 2015, 49(5): 3040-3047. |
38 | Seredych M, Hulicova-Jurcakova D, Lu G Q, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance[J]. Carbon, 2008, 46(11): 1475-1488. |
39 | Elisadiki J, King'ondu C K. Performance of ion intercalation materials in capacitive deionization/electrochemical deionization: a review[J]. Journal of Electroanalytical Chemistry, 2020, 878: 114588. |
40 | Tu Y H, Liu C F, Wang J A, et al. Construction of an inverted-capacitive deionization system utilizing pseudocapacitive materials[J]. Electrochemistry Communications, 2019, 104: 106486. |
41 | Kim S, Yoon H, Shin D, et al. Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide[J]. Journal of Colloid and Interface Science, 2017, 506: 644-648. |
42 | Kim T, Gorski C A, Logan B E. Ammonium removal from domestic wastewater using selective battery electrodes[J]. Environmental Science & Technology Letters, 2018, 5(9): 578-583. |
43 | Gao R, Bonin L, Arroyo J M C, et al. Separation and recovery of ammonium from industrial wastewater containing methanol using copper hexacyanoferrate (CuHCF) electrodes[J]. Water Research, 2021, 188: 116532. |
44 | Liang P, Sun X L, Bian Y H, et al. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode[J]. Desalination, 2017, 420: 63-69. |
45 | Nadakatti S, Tendulkar M, Kadam M. Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology[J]. Desalination, 2011, 268(1/2/3): 182-188. |
46 | Yasin A S, Yousef Mohamed A, Kim D H, et al. Design of zinc oxide nanoparticles and graphene hydrogel co-incorporated activated carbon for efficient capacitive deionization[J]. Separation and Purification Technology, 2021, 277: 119428. |
47 | 徐斌, 吴文倩, 张毅敏, 等. 石墨烯基电吸附电极材料的研究进展[J]. 水处理技术, 2020, 46(2): 13-18, 24. |
Xu B, Wu W Q, Zhang Y M, et al. Research progress of graphene-based electroadsorption electrode materials[J]. Technology of Water Treatment, 2020, 46(2): 13-18, 24. | |
48 | 杨顺. 阴阳离子脱嵌纳米复合电极材料的制备及其杂化电容脱盐性能[D]. 银川: 宁夏大学, 2019. |
Yang S. Fabrication of anion and cation insertion-deinsertion nano-composites electrode and their hybrid capacitive deionization performance[D]. Yinchuan: Ningxia University, 2019. | |
49 | Akuzum B, Singh P, Eichfeld D A, et al. Percolation characteristics of conductive additives for capacitive flowable (semi-solid) electrodes[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 5866-5875. |
50 | Ma J X, He D, Tang W W, et al. Development of redox-active flow electrodes for high-performance capacitive deionization[J]. Environmental Science & Technology, 2016, 50(24): 13495-13501. |
51 | Thu Tran N A, Phuoc N M, Yoon H, et al. Improved desalination performance of flow- and fixed-capacitive deionization using redox-active quinone[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(44): 16701-16710. |
52 | Fang K, Peng F, San E F, et al. The impact of concentration in electrolyte on ammonia removal in flow-electrode capacitive deionization system[J]. Separation and Purification Technology, 2021, 255: 117337. |
53 | Kong W Q, Wang G, Zhang M, et al. Villiform carbon fiber paper as current collector for capacitive deionization devices with high areal electrosorption capacity[J]. Desalination, 2019, 459: 1-9. |
54 | Santos C, Lado J J, García-Quismondo E, et al. Interconnected metal oxide CNT fibre hybrid networks for current collector-free asymmetric capacitive deionization[J]. Journal of Materials Chemistry A, 2018, 6(23): 10898-10908. |
55 | Qu Y, Baumann T F, Santiago J G, et al. Characterization of resistances of a capacitive deionization system[J]. Environmental Science & Technology, 2015, 49(16): 9699-9706. |
56 | Yang S, Jeon S I, Kim H, et al. Stack design and operation for scaling up the capacity of flow-electrode capacitive deionization technology[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(8): 4174-4180. |
57 | Rommerskirchen A, Ohs B, Hepp K A, et al. Modeling continuous flow-electrode capacitive deionization processes with ion-exchange membranes[J]. Journal of Membrane Science, 2018, 546: 188-196. |
58 | Zhang X D, Yang F, Ma J J, et al. Effective removal and selective capture of copper from salty solution in flow electrode capacitive deionization[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 341-350. |
59 | Lee K S, Cho Y, Choo K Y, et al. Membrane-spacer assembly for flow-electrode capacitive deionization[J]. Applied Surface Science, 2018, 433: 437-442. |
60 | 王振堃. 离子交换膜: 制备、性能及应用[M]. 北京: 化学工业出版社, 1986. |
Wang Z K. Ion Exchange Membrane: Preparation, Performance and Application [M]. Beijing: Chemical Industry Press, 1986. | |
61 | Mao S D, Chen L, Zhang Y, et al. Fractionation of mono- and divalent ions by capacitive deionization with nanofiltration membrane[J]. Journal of Colloid and Interface Science, 2019, 544: 321-328. |
62 | Nativ P, Lahav O, Gendel Y. Separation of divalent and monovalent ions using flow-electrode capacitive deionization with nanofiltration membranes[J]. Desalination, 2018, 425: 123-129. |
63 | Cho Y, Lee K S, Yang S, et al. A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization[J]. Energy & Environmental Science, 2017, 10(8): 1746-1750. |
64 | Choo K Y, Lee K S, Han M H, et al. Study on the electrochemical characteristics of porous ceramic spacers in a capacitive deionization cell using slurry electrodes[J]. Journal of Electroanalytical Chemistry, 2019, 835: 262-272. |
65 | Jeon S I, Yeo J G, Yang S, et al. Ion storage and energy recovery of a flow-electrode capacitive deionization process[J]. Journal of Materials Chemistry A, 2014, 2(18): 6378. |
66 | Ma J, Zhang C, Yang F, et al. Carbon black flow electrode enhanced electrochemical desalination using single-cycle operation[J]. Environmental Science & Technology, 2020, 54(2): 1177-1185. |
67 | Rommerskirchen A, Gendel Y, Wessling M. Single module flow-electrode capacitive deionization for continuous water desalination[J]. Electrochemistry Communications, 2015, 60: 34-37. |
68 | Ha Y, Lee H, Yoon H, et al. Enhanced salt removal performance of flow electrode capacitive deionization with high cell operational potential[J]. Separation and Purification Technology, 2021, 254: 117500. |
69 | Tsai S W, Hackl L, Kumar A, et al. Exploring the electrosorption selectivity of nitrate over chloride in capacitive deionization (CDI) and membrane capacitive deionization (MCDI)[J]. Desalination, 2021, 497: 114764. |
70 | Xu L Q, Yu C, Zhang J M, et al. Selective recovery of formic acid from wastewater using an ion-capture electrochemical system integrated with a liquid-membrane chamber[J]. Chemical Engineering Journal, 2021, 425: 131429. |
71 | Dorji P, Kim D I, Hong S, et al. Pilot-scale membrane capacitive deionisation for effective bromide removal and high water recovery in seawater desalination[J]. Desalination, 2020, 479: 114309. |
72 | Chung H J, Kim J, Kim D I, et al. Feasibility study of reverse osmosis-flow capacitive deionization (RO-FCDI) for energy-efficient desalination using seawater as the flow-electrode aqueous electrolyte[J]. Desalination, 2020, 479: 114326. |
73 | Tang K X, Yiacoumi S, Li Y P, et al. Optimal conditions for efficient flow-electrode capacitive deionization[J]. Separation and Purification Technology, 2020, 240: 116626. |
74 | Ha Y, Jung H B, Lim H, et al. Continuous lithium extraction from aqueous solution using flow-electrode capacitive deionization[J]. Energies, 2019, 12(15): 2913. |
75 | Wei Q, Hu Y D, Wang J, et al. Low energy consumption flow capacitive deionization with a combination of redox couples and carbon slurry[J]. Carbon, 2020, 170: 487-492. |
76 | Li D P, Ning X A, Li Y, et al. Nanoarchitectured reduced graphene oxide composite C2N materials as flow electrodes to optimize desalination performance[J]. Environmental Science: Nano, 2020, 7(7): 1980-1989. |
77 | Tang K X, Zhou K. Water desalination by flow-electrode capacitive deionization in overlimiting current regimes[J]. Environmental Science & Technology, 2020, 54(9): 5853-5863. |
78 | Zhang J, Tang L, Tang W W, et al. Removal and recovery of phosphorus from low-strength wastewaters by flow-electrode capacitive deionization[J]. Separation and Purification Technology, 2020, 237: 116322. |
79 | Zhang C Y, Wu L, Ma J X, et al. Integrated flow-electrode capacitive deionization and microfiltration system for continuous and energy-efficient brackish water desalination[J]. Environmental Science & Technology, 2019, 53(22): 13364-13373. |
80 | Xu L Q, Yu C, Tian S Y, et al. Selective recovery of phosphorus from synthetic urine using flow-electrode capacitive deionization (FCDI)-based technology[J]. ACS ES&T Water, 2021, 1(1): 175-184. |
81 | Zhang C Y, Wu L, Ma J X, et al. Evaluation of long-term performance of a continuously operated flow-electrode CDI system for salt removal from brackish waters[J]. Water Research, 2020, 173: 115580. |
82 | Sambrailo D, Ivic J. First land-based plant for RO desalination in Croatia[J]. Desalination, 2000, 132(1/2/3): 329-335. |
83 | Rico D P, Arias M F C. A reverse osmosis potable water plant at Alicante University: first years of operation[J]. Desalination, 2001, 137(1/2/3): 91-102. |
84 | Afonso M D, Jaber J O, Mohsen M S. Brackish groundwater treatment by reverse osmosis in Jordan[J]. Desalination, 2004, 164(2): 157-171. |
85 | Sambrailo D, Ivić J, Krstulović A. Economic evaluation of the first desalination plant in Croatia[J]. Desalination, 2005, 179(1/2/3): 339-344. |
86 | Belkacem M, Bekhti S, Bensadok K. Groundwater treatment by reverse osmosis[J]. Desalination, 2007, 206(1/2/3): 100-106. |
87 | Walha K, Amar R B, Firdaous L, et al. Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison[J]. Desalination, 2007, 207(1/2/3): 95-106. |
88 | Majali F, Ettouney H, Abdel-Jabbar N, et al. Design and operating characteristics of pilot scale reverse osmosis plants[J]. Desalination, 2008, 222(1/2/3): 441-450. |
89 | Alghoul M A, Poovanaesvaran P, Sopian K, et al. Review of brackish water reverse osmosis (BWRO) system designs[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2661-2667. |
90 | Aljundi I H. Second-law analysis of a reverse osmosis plant in Jordan[J]. Desalination, 2009, 239(1/2/3): 207-215. |
91 | Huang X F, Ling J, Xu J C, et al. Advanced treatment of wastewater from an iron and steel enterprise by a constructed wetland/ultrafiltration/reverse osmosis process[J]. Desalination, 2011, 269(1/2/3): 41-49. |
92 | Shen J J, Richards B S, Schäfer A I. Renewable energy powered membrane technology: case study of St. Dorcas borehole in Tanzania demonstrating fluoride removal via nanofiltration/reverse osmosis[J]. Separation and Purification Technology, 2016, 170: 445-452. |
93 | Demircioglu M, Kabay N, Kurucaovali I, et al. Demineralization by electrodialysis (ED)—separation performance and cost comparison for monovalent salts[J]. Desalination, 2003, 153(1/2/3): 329-333. |
94 | Kabay N, İpek Ö, Kahveci H, et al. Effect of salt combination on separation of monovalent and divalent salts by electrodialysis[J]. Desalination, 2006, 198(1/2/3): 84-91. |
95 | Chakrabarty T, Rajesh A M, Jasti A, et al. Stable ion-exchange membranes for water desalination by electrodialysis[J]. Desalination, 2011, 282: 2-8. |
96 | Malek P, Ortiz J M, Schulte-Herbrüggen H M A. Decentralized desalination of brackish water using an electrodialysis system directly powered by wind energy[J]. Desalination, 2016, 377: 54-64. |
97 | Zhao R, Biesheuvel P M, van der Wal A. Energy consumption and constant current operation in membrane capacitive deionization[J]. Energy & Environmental Science, 2012, 5(11): 9520. |
98 | Zhao R, Biesheuvel P M, Miedema H, et al. Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization[J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 205-210. |
99 | Omosebi A, Gao X, Landon J, et al. Correction to asymmetric electrode configuration for enhanced membrane capacitive deionization[J]. ACS Applied Materials & Interfaces, 2015, 7(17): 9306. |
100 | Liu Y H, Hsi H C, Li K C, et al. Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4762-4770. |
101 | Lee J H, Bae W S, Choi J H. Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process[J]. Desalination, 2010, 258(1/2/3): 159-163. |
102 | Lee J, Kim S, Kim C, et al. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques[J]. Energy Environ. Sci., 2014, 7(11): 3683-3689. |
103 | Kim Y J, Choi J H. Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane[J]. Separation and Purification Technology, 2010, 71(1): 70-75. |
104 | Kim S, Lee J, Kim C, et al. Na2FeP2O7 as a novel material for hybrid capacitive deionization[J]. Electrochimica Acta, 2016, 203: 265-271. |
105 | Kang J, Kim T, Shin H, et al. Direct energy recovery system for membrane capacitive deionization[J]. Desalination, 2016, 398: 144-150. |
106 | Kang J, Kim T, Jo K, et al. Comparison of salt adsorption capacity and energy consumption between constant current and constant voltage operation in capacitive deionization[J]. Desalination, 2014, 352: 52-57. |
107 | Gao X, Omosebi A, Landon J, et al. Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes[J]. Environmental Science & Technology, 2015, 49(18): 10920-10926. |
108 | Farmer J C, Fix D V, Mack G V, et al. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes[J]. Journal of the Electrochemical Society, 1996, 143(1): 159-169. |
109 | Biesheuvel P M, van Limpt B, van der Wal A. Dynamic adsorption/desorption process model for capacitive deionization[J]. The Journal of Physical Chemistry C, 2009, 113(14): 5636-5640. |
110 | Zhang B J, Boretti A, Castelletto S. Mxene pseudocapacitive electrode material for capacitive deionization[J]. Chemical Engineering Journal, 2022, 435: 134959. |
111 | Porada S, Zhang L, Dykstra J E. Energy consumption in membrane capacitive deionization and comparison with reverse osmosis[J]. Desalination, 2020, 488: 114383. |
112 | Kim T, Dykstra J E, Porada S, et al. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage[J]. Journal of Colloid and Interface Science, 2015, 446: 317-326. |
113 | Porada S, Weinstein L, Dash R, et al. Water desalination using capacitive deionization with microporous carbon electrodes[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1194-1199. |
114 | Długołęcki P, van der Wal A. Energy recovery in membrane capacitive deionization[J]. Environmental Science & Technology, 2013, 47(9): 4904-4910. |
115 | Doornbusch G J, Dykstra J E, Biesheuvel P M, et al. Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization[J]. Journal of Materials Chemistry A, 2016, 4(10): 3642-3647. |
116 | Yang S, Choi J, Yeo J G, et al. Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration[J]. Environmental Science & Technology, 2016, 50(11): 5892-5899. |
117 | Yang S, Kim H, Jeon S I, et al. Analysis of the desalting performance of flow-electrode capacitive deionization under short-circuited closed cycle operation[J]. Desalination, 2017, 424: 110-121. |
118 | He C, Ma J X, Zhang C Y, et al. Short-circuited closed-cycle operation of flow-electrode CDI for brackish water softening[J]. Environmental Science & Technology, 2018, 52(16): 9350-9360. |
119 | Moreno D, Hatzell M C. Influence of feed-electrode concentration differences in flow-electrode systems for capacitive deionization[J]. Industrial & Engineering Chemistry Research, 2018, 57(26): 8802-8809. |
120 | Tang K X, Yiacoumi S, Li Y P, et al. Enhanced water desalination by increasing the electroconductivity of carbon powders for high-performance flow-electrode capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1085-1094. |
121 | Yang F, Ma J J, Zhang X D, et al. Decreased charge transport distance by titanium mesh-membrane assembly for flow-electrode capacitive deionization with high desalination performance[J]. Water Research, 2019, 164: 114904. |
122 | 王森, 易佩, 袁娇娇. CDI及其在去除水中重金属离子方面的研究进展[J]. 应用化工, 2021, 50(9): 2562-2566. |
Wang S, Yi P, Yuan J J. CDI and its progress in the removal of heavy metal ions in water[J]. Applied Chemical Industry, 2021, 50(9): 2562-2566. | |
123 | Zhang C, Wang M, Xiao W, et al. Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI)[J]. Water Research, 2021, 189: 116653. |
124 | 莫剑雄. 电容吸附去离子方法的研究[J]. 水处理技术, 2007, 33(8): 20-22, 33. |
Mo J X. Researches on de-ionizing method by capacitive adsorption[J]. Technology of Water Treatment, 2007, 33(8): 20-22, 33. | |
125 | Tan C, He C, Fletcher J, et al. Energy recovery in pilot scale membrane CDI treatment of brackish waters[J]. Water Research, 2020, 168: 115146. |
126 | 石胜启. 基于石墨带电极的电容法脱盐组件串联装置实验研究[D]. 天津: 天津大学, 2012. |
Shi S Q. Experimental studies on series-wound CDI units with graphite ribbon electrode[D]. Tianjin: Tianjin University, 2012. | |
127 | 莫恒亮, 唐阳, 陈咏梅, 等. 流动电极电吸附(FCDI)与电渗析(ED)耦合实现连续脱盐技术研究[J]. 现代化工, 2019, 39(5): 91-95. |
Mo H L, Tang Y, Chen Y M, et al. Technical research in continuous desalting by coupling flow capacitive deionization and electrodialysis[J]. Modern Chemical Industry, 2019, 39(5): 91-95. | |
128 | 李敏. 电容去离子强化超滤耦合系统的污水再生特性与机制研究[D]. 北京: 北京林业大学, 2020. |
Li M. Characteristics and mechanism of wastewater reclamation of a capacitive deionization enhanced ultrafiltration system[D]. Beijing: Beijing Forestry University, 2020. | |
129 | 张须媚, 王霜, 高娟娟, 等. 电容去离子技术在水处理中的应用[J]. 水处理技术, 2018, 44(9): 16-21, 31. |
Zhang X M, Wang S, Gao J J, et al. Application of capacitive deionization technology in water treatment[J]. Technology of Water Treatment, 2018, 44(9): 16-21, 31. | |
130 | Xu L Q, Yu C, Mao Y F, et al. Can flow-electrode capacitive deionization become a new in situ soil remediation technology for heavy metal removal? [J]. Journal of Hazardous Materials, 2021, 402: 123568. |
131 | 蒲海, 吴敏, 熊小刚. 聚苯胺-铁氰化铜复合材料的制备与铵离子的选择性回收研究[J]. 塑料科技, 2020, 48(11): 54-58. |
Pu H, Wu M, Xiong X G. Study on synthesis and selective recovery of ammonia ion of polyaniline-copper hexacyanoferrate composite[J]. Plastics Science and Technology, 2020, 48(11): 54-58. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[3] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[6] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[9] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[10] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[13] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[14] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[15] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||