CIESC Journal ›› 2022, Vol. 73 ›› Issue (4): 1455-1471.DOI: 10.11949/0438-1157.20211369
• Reviews and monographs • Previous Articles Next Articles
Received:
2021-09-23
Revised:
2022-01-26
Online:
2022-04-25
Published:
2022-04-05
Contact:
Wei ZHOU
通讯作者:
周嵬
作者简介:
李文怀(1997—),男,博士研究生,CLC Number:
Wenhuai LI, Wei ZHOU. Analysis of influencing factors and design strategies of high oxygen ion conductivity perovskite[J]. CIESC Journal, 2022, 73(4): 1455-1471.
李文怀, 周嵬. 高氧离子电导钙钛矿的影响因素分析和设计策略[J]. 化工学报, 2022, 73(4): 1455-1471.
Add to citation manager EndNote|Ris|BibTeX
1 | Zhang Y, Knibbe R, Sunarso J, et al. Recent progress on advanced materials for solid-oxide fuel cells operating below 500℃[J]. Advanced Materials 2017, 29(48): 1700132. |
2 | Zhang Y, Chen B, Guan D, et al. Thermal-expansion offset for high-performance fuel cell cathodes [J]. Nature, 2021, 591 (7849): 246-251. |
3 | Zhou W, Shao Z P, Ran R, et al. Novel SrSc0.2Co0.8O3- δ as a cathode material for low temperature solid-oxide fuel cell[J]. Electrochemistry Communications, 2008, 10(10): 1647-1651. |
4 | Song Y F, Chen Y B, Xu M G, et al. A cobalt-free multi-phase nanocomposite as near-ideal cathode of intermediate-temperature solid oxide fuel cells developed by smart self-assembly[J]. Advanced Materials, 2020, 32(8): e1906979. |
5 | Zhou W, Jin W Q, Zhu Z H, et al. Structural, electrical and electrochemical characterizations of SrNb0.1Co0.9O3- δ as a cathode of solid oxide fuel cells operating below 600℃[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1356-1366. |
6 | Li M, Zhao M, Li F, et al. A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500℃ [J]. Nature Communications, 2017, 8: 13990. |
7 | Zhou W, Sunarso J, Zhao M W, et al. A highly active perovskite electrode for the oxygen reduction reaction below 600℃[J]. Angewandte Chemie International Edition, 2013, 52(52): 14036-14040. |
8 | Fergus J W. Perovskite oxides for semiconductor-based gas sensors[J]. Sensors and Actuators B: Chemical, 2007, 123(2): 1169-1179. |
9 | Fang W, Liang F Y, Cao Z W, et al. A mixed ionic and electronic conducting dual-phase membrane with high oxygen permeability[J]. Angewandte Chemie, 2015, 54(16): 4847-4850. |
10 | Zeng P Y, Chen Z H, Zhou W, et al. Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3- δ perovskite as oxygen semi-permeable membrane[J]. Journal of Membrane Science, 2007, 291(1/2): 148-156. |
11 | Peña M A, Fierro J L. Chemical structures and performance of perovskite oxides[J]. Chemical Reviews, 2001, 101(7): 1981-2017. |
12 | Mogensen M, Lybye D, Bonanos N, et al. Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides[J]. Solid State Ionics, 2004, 174(1/2/3/4): 279-286. |
13 | Gao Z, Mogni L V, Miller E C, et al. A perspective on low-temperature solid oxide fuel cells[J]. Energy & Environmental Science, 2016, 9(5): 1602-1644. |
14 | Chroneos A, Yildiz B, Tarancón A, et al. Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations[J]. Energy & Environmental Science, 2011, 4(8): 2774. |
15 | Shiiba H, Bishop C L, Rushton M J D, et al. Effect of A-site cation disorder on oxygen diffusion in perovskite-type Ba0.5Sr0.5Co1– x Fe x O2.5 [J]. Journal of Materials Chemistry A, 2013, 1(35): 10345. |
16 | Miyoshi S, Martin M. B-site cation diffusivity of Mn and Cr in perovskite-type LaMnO3 with cation-deficit nonstoichiometry[J]. Physical Chemistry Chemical Physics, 2009, 11(17): 3063. |
17 | Laidler K J, King M C. Development of transition-state theory[J]. The Journal of Physical Chemistry, 1983, 87(15): 2657-2664. |
18 | Souza R A, Martin M. An atomistic simulation study of oxygen-vacancy migration in perovskite electrolytes based on LaGaO3 [J]. Monatshefte Für Chemie - Chemical Monthly, 2009, 140(9): 1011-1015. |
19 | Kushima A, Yildiz B. Oxygen ion diffusivity in strained yttria stabilized zirconia: where is the fastest strain? [J]. Journal of Materials Chemistry, 2010, 20(23): 4809. |
20 | Kilner J A, Brook R J. A study of oxygen ion conductivity in doped non-stoichiometric oxides[J]. Solid State Ionics, 1982, 6(3): 237-252. |
21 | Manthiram A, Kim J H, Kim Y N, et al. Crystal chemistry and properties of mixed ionic-electronic conductors[J]. Journal of Electroceramics, 2011, 27(2): 93-107. |
22 | Ullmann H, Trofimenko N. Estimation of effective ionic radii in highly defective perovskite-type oxides from experimental data[J]. Journal of Alloys and Compounds, 2001, 316(1/2): 153-158. |
23 | Jia Y Q. Crystal radii and effective ionic radii of the rare earth ions[J]. Journal of Solid State Chemistry, 1991, 95(1): 184-187. |
24 | Lybye D, Poulsen F W, Mogensen M. Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites[J]. Solid State Ionics, 2000, 128(1/2/3/4): 91-103. |
25 | Wang S, Shi L, Boubeche M, et al. Influence of Ln elements (Ln = La, Pr, Nd, Sm) on the structure and oxygen permeability of Ca-containing dual-phase membranes[J]. Separation and Purification Technology, 2020, 251: 117361. |
26 | Yashima M. Crystal structures, structural disorders and diffusion paths of ionic conductors from diffraction experiments[J]. Solid State Ionics, 2008, 179(21/22/23/24/25/26): 797-803. |
27 | Singhal S C, Kendall K. High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications[M]. Elsevier, 2002. |
28 | Slater P R, Irvine J T S, Ishihara T, et al. High-temperature powder neutron diffraction study of the oxide ion conductor La0.9Sr0.1Ga0.8Mg0.2O2.85 [J]. Journal of Solid State Chemistry, 1998, 139(1): 135-143. |
29 | Kajitani M, Matsuda M, Miyake M. Effect of Al doping on crystal structure and electrical conduction properties of LaGa0.9Mg0.1O2.95 perovskite compound[J]. Solid State Ionics, 2007, 178(5/6): 355-358. |
30 | Hayashi H, Inaba H, Matsuyama M, et al. Structural consideration on the ionic conductivity of perovskite-type oxides[J]. Solid State Ionics, 1999, 122(1/2/3/4): 1-15. |
31 | Nomura K, Tanase S. Electrical conduction behavior in (La0.9Sr0.1)MⅢO3- δ (MⅢ=Al, Ga, Sc, Ln, and Lu) perovskites[J]. Solid State Ionics, 1997, 98(3/4): 229-236. |
32 | Gao R, Jain A C P, Pandya S, et al. Designing optimal perovskite structure for high ionic conduction[J]. Advanced Materials, 2020, 32(1): e1905178. |
33 | Rupp J L M. Ionic diffusion as a matter of lattice-strain for electroceramic thin films[J]. Solid State Ionics, 2012, 207: 1-13. |
34 | Jiang J, Hu X C, Shen W D, et al. Improved ionic conductivity in strained yttria-stabilized zirconia thin films[J]. Applied Physics Letters, 2013, 102(14): 143901. |
35 | Shi Y, Bork A H, Schweiger S, et al. The effect of mechanical twisting on oxygen ionic transport in solid-state energy conversion membranes [J]. Nature Materials, 2015, 14(7): 721-727. |
36 | Rupp J L M, Fabbri E, Marrocchelli D, et al. Scalable oxygen-ion transport kinetics in metal-oxide films: impact of thermally induced lattice compaction in acceptor doped ceria films[J]. Advanced Functional Materials, 2014, 24(11): 1562-1574. |
37 | Kubicek M, Cai Z H, Ma W, et al. Tensile lattice strain accelerates oxygen surface exchange and diffusion in La1- x Sr x CoO3- δ thin films[J]. ACS Nano, 2013, 7(4): 3276-3286. |
38 | Rushton M J D, Chroneos A, Skinner S J, et al. Effect of strain on the oxygen diffusion in yttria and gadolinia co-doped ceria[J]. Solid State Ionics, 2013, 230: 37-42. |
39 | Sammells A F, Cook R L, White J H, et al. Rational selection of advanced solid electrolytes for intermediate temperature fuel cells[J]. Solid State Ionics, 1992, 52(1/2/3): 111-123. |
40 | Kakinuma K, Waki T, Yamamura H, et al. Oxide ion conductivity in (Ba0.3Sr0.2La0.5)(In1- x M x )O2.75 (M = Sc and Yb) systems[J]. Journal of the Ceramic Society of Japan, 2009, 117(1364): 529-533. |
41 | Cook R L, Sammells A F. On the systematic selection of perovskite solid electrolytes for intermediate temperature fuel cells[J]. Solid State Ionics, 1991, 45(3/4): 311-321. |
42 | Kakinuma K, Saito M, Atake T. Oxide-ion conductivity of the oxygen deficient perovskite solid-solution system, (Ba0.5- x Sr x La0.5)2(In1- y My)2O5.5 (M=Y or Ga)[J]. Journal of Thermal Analysis and Calorimetry, 2002, 69(3): 897-904. |
43 | Gu H X, Xu M G, Song Y F, et al. SrCo0.8Ti0.1Ta0.1O3- δ perovskite: a new highly active and durable cathode material for intermediate-temperature solid oxide fuel cells[J]. Composites Part B: Engineering, 2021, 213: 108726. |
44 | Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. |
45 | Petric A, Huang P N. Oxygen conductivity of Nd(SrCa)Ga(Mg)O3- δ perovskites[J]. Solid State Ionics, 1996, 92(1/2): 113-117. |
46 | Ishihara T, Furutani H, Arikawa H, et al. Oxide ion conductivity in doubly doped PrGaO3 perovskite-type oxide[J]. Journal of the Electrochemical Society, 1999, 146(5): 1643-1649. |
47 | Boivin J C, Mairesse G. Recent material developments in fast oxide ion conductors[J]. Chemistry of Materials, 1998, 10(10): 2870-2888. |
48 | Konysheva E Y, Xu X X, Irvine J T S. On the existence of A-site deficiency in perovskites and its relation to the electrochemical performance[J]. Advanced Materials, 2012, 24(4): 528-532. |
49 | Lide D R. CRC Handbook of Chemistry and Physics[M]. 90th ed. CRC Press, 2009-2010. |
50 | Kuai X, Yang G M, Chen Y B, et al. Boosting the activity of BaCo0.4Fe0.4Zr0.1Y0.1O3- δ perovskite for oxygen reduction reactions at low-to-intermediate temperatures through tuning B-site cation deficiency[J]. Advanced Energy Materials, 2019, 9(38): 1902384. |
51 | Zhou W, Ran R, Shao Z P, et al. Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1- x Co0.8Fe0.2O3- δ (x > 0) perovskite as a solid-oxide fuel cell cathode[J]. Journal of Power Sources, 2008, 182(1): 24-31. |
52 | Ding X F, Gao Z P, Ding D, et al. Cation deficiency enabled fast oxygen reduction reaction for a novel SOFC cathode with promoted CO2 tolerance[J]. Applied Catalysis B: Environmental, 2019, 243: 546-555. |
53 | Shao Z, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431(7005): 170-173. |
54 | Moos R, Schöllhammer S, Härdtl K H. Electron mobility of Sr1- x La x TiO3 ceramics between 600℃ and 1300℃[J]. Applied Physics A, 1997, 65(3): 291-294. |
55 | Fujishiro F, Izaki M, Hashimoto T. Enhancement of the oxygen desorption/absorption property of BaFe1- x In x O3- δ by in substitution for Fe site[J]. Journal of the American Ceramic Society, 2018, 101(4): 1696-1703. |
56 | Ishigaki T, Yamauchi S, Kishio K, et al. Diffusion of oxide ion vacancies in perovskite-type oxides[J]. Journal of Solid State Chemistry, 1988, 73(1): 179-187. |
57 | Cherry M, Islam M S, Catlow C R A. Oxygen ion migration in perovskite-type oxides[J]. Journal of Solid State Chemistry, 1995, 118(1): 125-132. |
58 | Kuklja M M, Kotomin E A, Merkle R, et al. Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells[J]. Physical Chemistry Chemical Physics: PCCP, 2013, 15(15): 5443-5471. |
59 | Colomer M T, Steele B C H, Kilner J A. Structural and electrochemical properties of the Sr0.8Ce0.1Fe0.7Co0.3O3- δ perovskite as cathode material for ITSOFCs[J]. Solid State Ionics, 2002, 147(1/2): 41-48. |
60 | Zhu Y L, Lin Y, Shen X, et al. Influence of crystal structure on the electrochemical performance of A-site-deficient Sr1- s Nb0.1Co0.9O3– δ perovskite cathodes[J]. RSC Adv., 2014, 4(77): 40865-40872. |
61 | Huang S G, Lu Q L, Feng S J, et al. Ba0.9Co0.7Fe0.2Mo0.1O3- δ : a promising single-phase cathode for low temperature solid oxide fuel cells[J]. Advanced Energy Materials, 2011, 1(6): 1094-1096. |
62 | van Doorn R H E, Burggraaf A J. Structural aspects of the ionic conductivity of La1- x Sr x CoO3- δ [J]. Solid State Ionics, 2000, 128(1/2/3/4): 65-78. |
63 | Liu G J, Li X T, Wang Y Q, et al. Nanoscale domains of ordered oxygen-vacancies in LaCoO3 films[J]. Applied Surface Science, 2017, 425: 121-129. |
64 | Burbano M, Marrocchelli D, Watson G W. Strain effects on the ionic conductivity of Y-doped ceria: a simulation study[J]. Journal of Electroceramics, 2014, 32(1): 28-36. |
65 | Bogicevic A, Wolverton C, Crosbie G M, et al. Defect ordering in aliovalently doped cubic zirconia from first principles[J]. Physical Review B, 2001, 64: 014106. |
66 | Yamamura H, Katoh E, Ichikawa M, et al. Multiple doping effect on the electrical conductivity in the (Ce1- x- y La x M y )O2- δ (M = Ca, Sr) system[J]. Electrochemistry, 2000, 68(6): 455-459. |
67 | Tomura Y, Oikawa I, Takamura H. Oxygen vacancy order-disorder transition at high temperature in Bi-Sr-Fe-based perovskite-type oxides[J]. Physical Review Materials, 2019, 3(12): 125802. |
68 | Zhang J X, Zhang Z B, Chen Y B, et al. Materials design for ceramic oxygen permeation membranes: single perovskite vs. single/double perovskite composite, a case study of tungsten-doped barium strontium cobalt ferrite[J]. Journal of Membrane Science, 2018, 566: 278-287. |
69 | Carl W. Equations for transport in solid oxides and sulfides of transition metals[J]. Progress in Solid State Chemistry, 1975, 10: 3-16. |
70 | Vandieten V. Oxygen diffusion in the SOFC interconnection material LaCr1- x Mg x O3 [J]. Solid State Ionics, 1992, 53/54/55/56: 611-614. |
71 | Lenser C, Menzler N H. Impedance characterization of supported oxygen ion conducting electrolytes[J]. Solid State Ionics, 2019, 334: 70-81. |
72 | Dąbrowa J, Olszewska A, Falkenstein A, et al. An innovative approach to design SOFC air electrode materials: high entropy La1– x Sr x (Co, Cr, Fe, Mn, Ni)O3- δ (x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the sol-gel method[J]. Journal of Materials Chemistry A, 2020, 8(46): 24455-24468. |
73 | Deka D J, Gunduz S, Fitzgerald T, et al. Production of syngas with controllable H2/CO ratio by high temperature co-electrolysis of CO2 and H2O over Ni and Co- doped lanthanum strontium ferrite perovskite cathodes[J]. Applied Catalysis B: Environmental, 2019, 248: 487-503. |
74 | Fukunaga O, Fujita T. The relation between ionic radii and cell volumes in the perovskite compounds[J]. Journal of Solid State Chemistry, 1973, 8(4): 331-338. |
75 | Tsuji Y, Sako S, Nitta K, et al. Surface analysis of lanthanum strontium cobalt oxides under cathodic polarization at high temperature through operando total-reflection X-ray absorption and X-ray fluorescence spectroscopy[J]. Solid State Ionics, 2020, 357: 115502. |
76 | Guan D, Ryu G, Hu Z, et al. Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors[J]. Nature Communications, 2020, 11: 3376. |
77 | Li K Y, Xue D F. Estimation of electronegativity values of elements in different valence states[J]. The Journal of Physical Chemistry. A, 2006, 110(39): 11332-11337. |
78 | Li K Y, Wang X T, Zhang F F, et al. Electronegativity identification of novel superhard materials[J]. Physical Review Letters, 2008, 100(23): 235504. |
79 | Sass B, Tusche C, Felsch W, et al. Structural and electronic properties of epitaxial V2O3 thin films[J]. Journal of Physics: Condensed Matter, 2004, 16(1): 77-87. |
80 | Gao M, Li C J, Li C X, et al. Microstructure, oxygen stoichiometry and electrical conductivity of flame-sprayed Sm0.7Sr0.3CoO3- δ [J]. Journal of Power Sources, 2009, 191(2): 275-279. |
81 | Li M R, Zhou W, Peterson V K, et al. A comparative study of SrCo0.8Nb0.2O3– δ and SrCo0.8Ta0.2O3– δ as low-temperature solid oxide fuel cell cathodes: effect of non-geometry factors on the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2015, 3(47): 24064-24070. |
82 | Lai S Y, Ding D, Liu M F, et al. Operando and in situ X-ray spectroscopies of degradation in La0.6Sr0.4Co0.2Fe0.8O(3- δ) thin film cathodes in fuel cells[J]. ChemSusChem, 2014, 7(11): 3078-3087. |
83 | Chen T, Miao J, Zhu M, et al. Thermal reduction-assisted electronic structure tuning of perovskite oxide as catalyst for efficient advanced oxidation[J]. Composites Part B: Engineering, 2021, 207: 108577. |
84 | Sediva E, Defferriere T, Perry N H, et al. In situ method correlating Raman vibrational characteristics to chemical expansion via oxygen nonstoichiometry of perovskite thin films[J]. Advanced Materials, 2019, 31(33): 1902493. |
85 | Ou D R, Mori T, Ye F, et al. Oxygen-vacancy ordering in lanthanide-doped ceria: dopant-type dependence and structure model[J]. Physical Review B, 2008, 77(2): 024108. |
86 | Gangopadhyay S, Masunov A E, Inerbaev T, et al. Understanding oxygen vacancy migration and clustering in barium strontium cobalt iron oxide[J]. Solid State Ionics, 2010, 181(23/24): 1067-1073. |
87 | Tahini H A, Tan X, Schwingenschlögl U, et al. Formation and migration of oxygen vacancies in SrCoO3 and their effect on oxygen evolution reactions[J]. ACS Catalysis, 2016, 6(8): 5565-5570. |
88 | Hanselman C L, de Nyago Tafen, Alfonso D R, et al. A framework for optimizing oxygen vacancy formation in doped perovskites[J]. Computers & Chemical Engineering, 2019, 126: 168-177. |
89 | Aschauer U, Pfenninger R, Selbach S M, et al. Strain-controlled oxygen vacancy formation and ordering in CaMnO3 [J]. Physical Review B, 2013, 88(5): 054111. |
90 | Mao X, Li Z H, Li M R, et al. Computational design and experimental validation of the optimal bimetal-doped SrCoO3– δ perovskite as solid oxide fuel cell cathode[J]. Journal of the American Chemical Society, 2021, 143(25): 9507-9514. |
91 | Gan L Y, Akande S O, Schwingenschlögl U. Anisotropic O vacancy formation and diffusion in LaMnO3 [J]. J. Mater. Chem. A, 2014, 2(46): 19733-19737. |
92 | Jones A, Islam M S. Atomic-scale insight into LaFeO3 perovskite: defect nanoclusters and ion migration[J]. The Journal of Physical Chemistry C, 2008, 112(12): 4455-4462. |
93 | Yang Q, Cao J X, Ma Y, et al. Strain effects on formation and migration energies of oxygen vacancy in perovskite ferroelectrics: a first-principles study[J]. Journal of Applied Physics, 2013, 113(18): 184110. |
94 | Minh N Q. Ceramic fuel cells[J]. Journal of the American Ceramic Society, 1993, 76(3): 563-588. |
[1] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[2] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[3] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[4] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[5] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[6] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[7] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
[8] | Ming PENG, Qiangfeng XIA, Lixiang JIANG, Ruiyuan ZHANG, Lingyi GUO, Li CHEN, Wenquan TAO. Study on the effect of gas channel arrangement on the performance of air-cooled fuel cells [J]. CIESC Journal, 2022, 73(10): 4625-4637. |
[9] | FU Fengyan, XING Guang'en. Progress of polymer-based anion exchange membrane for alkaline fuel cell application [J]. CIESC Journal, 2021, 72(S1): 42-52. |
[10] | XU Bin. Parameter optimal identification of proton exchange membrane fuel cell model based on an improved differential evolution algorithm [J]. CIESC Journal, 2021, 72(3): 1512-1520. |
[11] | ZHANG Jin, GUO Zhibin, ZHANG Jujia, WANG Haining, XIANG Yan, JIANG San Ping, LU Shanfu. Study on performance of polyethersulfone-polyvinylpyrrolidone high temperature polymer electrolyte membrane and fuel cell stack [J]. CIESC Journal, 2021, 72(1): 589-596. |
[12] | Haitao CHEN, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Haijun LI, Kening SUN. Investigation on preparation and carbon catalytic ability of in-situ bimetallic nanoparticle YST composite anode [J]. CIESC Journal, 2020, 71(9): 4270-4281. |
[13] | Yang XIAO, Chunming XU, Xiaoxia YANG, Lihong ZHANG, Wang SUN, Jinshuo QIAO, Zhenhua WANG, Kening SUN. Preparation and electrochemical properties of NiMn2O4 spinel oxide cathode [J]. CIESC Journal, 2020, 71(9): 4292-4302. |
[14] | Aiping MU, Dingding YE, Rong CHEN, Xun ZHU, Qiang LIAO. LB simulation of anode mass transfer characteristics in cotton thread-based microfluidic fuel cell [J]. CIESC Journal, 2020, 71(7): 3278-3287. |
[15] | Fangju LI, Wei WU, Shuangfeng WANG. Pore network simulation of transport properties in grooved gas diffusion layer of PEMFC [J]. CIESC Journal, 2020, 71(5): 1976-1985. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||