CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 995-1009.DOI: 10.11949/0438-1157.20221448
• Reviews and monographs • Previous Articles Next Articles
Yin XU1(), Jie CAI1, Lu CHEN1, Yu PENG1, Fuzhen LIU1(), Hui ZHANG2()
Received:
2022-11-08
Revised:
2023-01-04
Online:
2023-04-19
Published:
2023-03-05
Contact:
Fuzhen LIU, Hui ZHANG
徐银1(), 蔡洁1, 陈露1, 彭宇1, 刘夫珍1(), 张晖2()
通讯作者:
刘夫珍,张晖
作者简介:
徐银(1988—),男,博士,副教授,yxu@hubu.edu.cn
基金资助:
CLC Number:
Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control[J]. CIESC Journal, 2023, 74(3): 995-1009.
徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009.
表征目的 | 表征内容 | 表征仪器 | 文献 |
---|---|---|---|
光响应范围 | 紫外-可见漫反射光谱(UV-Vis DRS) | 紫外-可见漫反射光谱仪 | [ |
光生载流子分离状况 | 光致发光光谱(PL) | 荧光光谱仪 | [ |
瞬时光电流(I-t) | 电化学工作站 | [ | |
光生载流子分离状况/电荷传输能力 | 电化学阻抗谱(EIS) | 电化学工作站 | [ |
循环伏安曲线(CV) | 电化学工作站 | [ | |
光生载流子的寿命 | 时间分辨光致发光光谱(TRPL) | 荧光光谱仪 | [ |
禁带宽度 | Kubelka-Munk方程式 | 紫外-可见漫反射光谱仪 | [ |
循环伏安曲线(CV) | 电化学工作站 | [ | |
密度泛函理论(DFT) | Materials Studio、VASP软件 | [ | |
价带电势 | 价带XPS能谱 | X射线光电子能谱 | [ |
导带电势 | 莫特-肖特基(Mott-Schottky)曲线 | 电化学工作站 | [ |
Table 1 Characterizations of photocatalytic material
表征目的 | 表征内容 | 表征仪器 | 文献 |
---|---|---|---|
光响应范围 | 紫外-可见漫反射光谱(UV-Vis DRS) | 紫外-可见漫反射光谱仪 | [ |
光生载流子分离状况 | 光致发光光谱(PL) | 荧光光谱仪 | [ |
瞬时光电流(I-t) | 电化学工作站 | [ | |
光生载流子分离状况/电荷传输能力 | 电化学阻抗谱(EIS) | 电化学工作站 | [ |
循环伏安曲线(CV) | 电化学工作站 | [ | |
光生载流子的寿命 | 时间分辨光致发光光谱(TRPL) | 荧光光谱仪 | [ |
禁带宽度 | Kubelka-Munk方程式 | 紫外-可见漫反射光谱仪 | [ |
循环伏安曲线(CV) | 电化学工作站 | [ | |
密度泛函理论(DFT) | Materials Studio、VASP软件 | [ | |
价带电势 | 价带XPS能谱 | X射线光电子能谱 | [ |
导带电势 | 莫特-肖特基(Mott-Schottky)曲线 | 电化学工作站 | [ |
VLP-PS体系 | 主要活性物质 | 次要活性物质 | 反应条件 | 污染物去除效率 | 文献 |
---|---|---|---|---|---|
ZnFe2O4/g-C3N4/PMS/Vis | 1O2, h+ | 0.3 g·L-1 catalyst, 0.1 mmol·L-1 双酚A, 0.5 mmol·L-1 PMS, pH 3.5~9.0 | >99.7% in 60 min | [ | |
g-C3N4/PDS/Vis | — | 0.5 g·L-1 catalyst, 5.0 mg·L-1双酚A, 5.0 mmol·L-1 PDS, pH 3 | 100% in 90 min | [ | |
g-C3N4/PMS/Vis | 0.4 g·L-1 catalyst, 20 mg·L-1 酸性橙Ⅱ, 0.2 g·L-1 PMS, pH 3.82 | 96.3% in 30 min | [ | ||
Co3O4/量子点g-C3N4/ PMS/Vis | h+, | — | 0.2 g·L-1 catalyst, 20 mg·L-1 四环素, 50 mg·L-1 PMS, pH 6 | 97.1% in 10 min | [ |
CoAl-LDHs/g-C3N4/ PMS/Vis | h+ | 0.2 g·L-1 catalyst, 10 μmol·L-1磺胺嘧啶, 0.5 mmol·L-1 PMS, pH 6.0 | 87.1% in 15 min | [ | |
Bi2O3/CuNiFe LDHs/ PDS/Vis | 0.4 g·L-1 catalyst, 10 mg·L-1 洛美沙星, 0.74 mmol·L-1 PDS, pH 6.08 | 84.6% in 40 min | [ | ||
MoO3/g-C3N4/PDS/Vis | 0.6 g·L-1 catalyst, 10 mg·L-1 氧氟沙星, 5 mmol·L-1 PDS, natural pH | 94.4% in 120 min | [ | ||
MIL-53(Fe)/PDS/Vis | — | 0.2 g·L-1 catalyst, 300 mg·L-1 四环素, 8.0 mmol·L-1 PDS, pH 3.45 | 99.7% in 80 min | [ | |
K-Fe/PDS/Vis | — | 0.4 g·L-1 catalyst, 0.1 mmol·L-1 罗丹明B, 7.0 mmol·L-1 PDS, pH 5.0 | 97.0% in 180 min | [ | |
TiO2/AB/PDS/Vis | •OH | 0.5 g·L-1 catalyst, 30 mg·L-1 四环素, 3.0 mmol·L-1 PDS, pH 4.1 | 93.3% in 120 min | [ | |
g-C3N4/Fe(Ⅲ)/PDS/Vis | — | 1.875 g·L-1 g-C3N4 with 0.35 g·L-1 Fe3+, 10 mg·L-1 苯酚, 0.3 g·L-1 PDS, natural pH | 33% in 90 min | [ | |
Co3O4/CeO2/PMS/Vis | — | 0.5 g·L-1 catalyst, 5.0 mg·L-1环丙沙星, 0.1 g·L-1 PMS, pH 3.45 | 87.8% in 50 min | [ | |
Ag/AgCl@ZIF-8/g-C3N4/PMS/Vis | 0.01 g·L-1 catalyst, 0.01 g·L-1 洛美沙星, 2.0 mmol·L-1 PMS, pH 6.5 | 87.3% in 60 min | [ | ||
Bi12O17Cl2/MIL-100(Fe)/PDS/Vis | h+, | 0.25 g·L-1 catalyst, 10 mg·L-1 双酚A, 2.0 mmol·L-1 PDS, pH 5.2 | 99.3% in 60 min | [ | |
Ilmenite/PDS/Vis | 1O2 | 1.0 g·L-1 catalyst, 5 log10 cfu·ml-1E.coli, 0.5 mmol·L-1 PDS, pH 5 | 100% in 20min | [ | |
p(HEA-APTM)-BiOI/ PMS/Vis | h+, 1O2 | 2.0 g·L-1 catalyst, 50 mg·L-1 对羟基苯甲酸甲酯, 1.5 mmol·L-1 PMS, pH 3.18 | 100% in 90min | [ | |
γ-Fe2O3/MnO2/PMS/Vis | 0.15 g·L-1 catalyst, 50 μmol·L-1 环丙沙星, 0.3 g·L-1 PMS, neutral pH | 98.3% in 30 min | [ | ||
Bi2MoO6/PDS/Vis | h+, | •OH | 0.5 g·L-1 catalyst, 20 mg·L-1 四环素, 4.0 g·L-1 PDS, pH 4.4 | 83.0% in 60 min | [ |
CuBi2O4/PMS/Vis | h+, 1O2 | 0.5 g·L-1 catalyst, 5.0 mg·L-1环丙沙星, 0.125 g·L-1 PMS, pH 5.0 | > 90% in 30 min | [ | |
g-C3N4/MnFe2O4/graphene/PDS/Vis | h+, •OH, | — | 1.0 g·L-1 catalyst, 20 mg·L-1 甲硝唑, 0.01 mol·L-1 PDS, natural pH | 94.5% in 60 min | [ |
CuBi2O4/MnO2/PMS/Vis | h+, | 0.3 g·L-1 catalyst, 10.0 mg·L-1 头孢噻呋, 0.4 g·L-1 PMS, pH 11.0 | 93.6% in 40 min | [ |
Table 2 The reactive species in VLP-PS systems
VLP-PS体系 | 主要活性物质 | 次要活性物质 | 反应条件 | 污染物去除效率 | 文献 |
---|---|---|---|---|---|
ZnFe2O4/g-C3N4/PMS/Vis | 1O2, h+ | 0.3 g·L-1 catalyst, 0.1 mmol·L-1 双酚A, 0.5 mmol·L-1 PMS, pH 3.5~9.0 | >99.7% in 60 min | [ | |
g-C3N4/PDS/Vis | — | 0.5 g·L-1 catalyst, 5.0 mg·L-1双酚A, 5.0 mmol·L-1 PDS, pH 3 | 100% in 90 min | [ | |
g-C3N4/PMS/Vis | 0.4 g·L-1 catalyst, 20 mg·L-1 酸性橙Ⅱ, 0.2 g·L-1 PMS, pH 3.82 | 96.3% in 30 min | [ | ||
Co3O4/量子点g-C3N4/ PMS/Vis | h+, | — | 0.2 g·L-1 catalyst, 20 mg·L-1 四环素, 50 mg·L-1 PMS, pH 6 | 97.1% in 10 min | [ |
CoAl-LDHs/g-C3N4/ PMS/Vis | h+ | 0.2 g·L-1 catalyst, 10 μmol·L-1磺胺嘧啶, 0.5 mmol·L-1 PMS, pH 6.0 | 87.1% in 15 min | [ | |
Bi2O3/CuNiFe LDHs/ PDS/Vis | 0.4 g·L-1 catalyst, 10 mg·L-1 洛美沙星, 0.74 mmol·L-1 PDS, pH 6.08 | 84.6% in 40 min | [ | ||
MoO3/g-C3N4/PDS/Vis | 0.6 g·L-1 catalyst, 10 mg·L-1 氧氟沙星, 5 mmol·L-1 PDS, natural pH | 94.4% in 120 min | [ | ||
MIL-53(Fe)/PDS/Vis | — | 0.2 g·L-1 catalyst, 300 mg·L-1 四环素, 8.0 mmol·L-1 PDS, pH 3.45 | 99.7% in 80 min | [ | |
K-Fe/PDS/Vis | — | 0.4 g·L-1 catalyst, 0.1 mmol·L-1 罗丹明B, 7.0 mmol·L-1 PDS, pH 5.0 | 97.0% in 180 min | [ | |
TiO2/AB/PDS/Vis | •OH | 0.5 g·L-1 catalyst, 30 mg·L-1 四环素, 3.0 mmol·L-1 PDS, pH 4.1 | 93.3% in 120 min | [ | |
g-C3N4/Fe(Ⅲ)/PDS/Vis | — | 1.875 g·L-1 g-C3N4 with 0.35 g·L-1 Fe3+, 10 mg·L-1 苯酚, 0.3 g·L-1 PDS, natural pH | 33% in 90 min | [ | |
Co3O4/CeO2/PMS/Vis | — | 0.5 g·L-1 catalyst, 5.0 mg·L-1环丙沙星, 0.1 g·L-1 PMS, pH 3.45 | 87.8% in 50 min | [ | |
Ag/AgCl@ZIF-8/g-C3N4/PMS/Vis | 0.01 g·L-1 catalyst, 0.01 g·L-1 洛美沙星, 2.0 mmol·L-1 PMS, pH 6.5 | 87.3% in 60 min | [ | ||
Bi12O17Cl2/MIL-100(Fe)/PDS/Vis | h+, | 0.25 g·L-1 catalyst, 10 mg·L-1 双酚A, 2.0 mmol·L-1 PDS, pH 5.2 | 99.3% in 60 min | [ | |
Ilmenite/PDS/Vis | 1O2 | 1.0 g·L-1 catalyst, 5 log10 cfu·ml-1E.coli, 0.5 mmol·L-1 PDS, pH 5 | 100% in 20min | [ | |
p(HEA-APTM)-BiOI/ PMS/Vis | h+, 1O2 | 2.0 g·L-1 catalyst, 50 mg·L-1 对羟基苯甲酸甲酯, 1.5 mmol·L-1 PMS, pH 3.18 | 100% in 90min | [ | |
γ-Fe2O3/MnO2/PMS/Vis | 0.15 g·L-1 catalyst, 50 μmol·L-1 环丙沙星, 0.3 g·L-1 PMS, neutral pH | 98.3% in 30 min | [ | ||
Bi2MoO6/PDS/Vis | h+, | •OH | 0.5 g·L-1 catalyst, 20 mg·L-1 四环素, 4.0 g·L-1 PDS, pH 4.4 | 83.0% in 60 min | [ |
CuBi2O4/PMS/Vis | h+, 1O2 | 0.5 g·L-1 catalyst, 5.0 mg·L-1环丙沙星, 0.125 g·L-1 PMS, pH 5.0 | > 90% in 30 min | [ | |
g-C3N4/MnFe2O4/graphene/PDS/Vis | h+, •OH, | — | 1.0 g·L-1 catalyst, 20 mg·L-1 甲硝唑, 0.01 mol·L-1 PDS, natural pH | 94.5% in 60 min | [ |
CuBi2O4/MnO2/PMS/Vis | h+, | 0.3 g·L-1 catalyst, 10.0 mg·L-1 头孢噻呋, 0.4 g·L-1 PMS, pH 11.0 | 93.6% in 40 min | [ |
1 | Yu Y, Li N, Lu X K, et al. Co/N co-doped carbonized wood sponge with 3D porous framework for efficient peroxymonosulfate activation: performance and internal mechanism[J]. Journal of Hazardous Materials, 2022, 421: 126735. |
2 | Zhou P, Yang Y Y, Ren W, et al. Molecular and kinetic insights to boron boosted Fenton-like activation of peroxymonosulfate for water decontamination[J]. Applied Catalysis B: Environmental, 2022, 319: 121916. |
3 | Chen H X, Xu Y, Zhu K M, et al. Understanding oxygen-deficient La2CuO4- δ perovskite activated peroxymonosulfate for bisphenol A degradation: the role of localized electron within oxygen vacancy[J]. Applied Catalysis B: Environmental, 2021, 284: 119732. |
4 | Li M, Zhang H, Liu Z L, et al. Surface lattice oxygen mobility inspired peroxymonosulfate activation over Mn2O3 exposing different crystal faces toward bisphenol A degradation[J]. Chemical Engineering Journal, 2022, 450: 138147. |
5 | Liu J J, He H, Shen Z R, et al. Photoassisted highly efficient activation of persulfate over a single-atom Cu catalyst for tetracycline degradation: process and mechanism[J]. Journal of Hazardous Materials, 2022, 429: 128398. |
6 | Tian D Q, Zhou H Y, Zhang H, et al. Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: from basic catalyst design principles to novel enhancement strategies[J]. Chemical Engineering Journal, 2022, 428: 131166. |
7 | Zhang G Q, Zhao L Y, Hu X X, et al. Synergistic activation of sulfate by TiO2 nanotube arrays-based electrodes for berberine degradation: insight into pH-dependant ORR-strengthened reactive radicals co-generation mechanism[J]. Applied Catalysis B: Environmental, 2022, 313: 121453. |
8 | 韩雪, 高生旺, 王国英, 等. 铈掺杂强化碳纳米管活化过一硫酸盐实验研究[J]. 化工学报, 2022, 73(4): 1743-1753. |
Han X, Gao S W, Wang G Y, et al. Research of enhanced carbon nanotubes activated peroxymonosulfate by cerium doping[J]. CIESC Journal, 2022, 73(4): 1743-1753. | |
9 | Zhang Y, Sun J, Guo Z W, et al. The decomplexation of Cu-EDTA by electro-assisted heterogeneous activation of persulfate via acceleration of Fe(Ⅱ)/Fe(Ⅲ) redox cycle on Fe-MOF catalyst[J]. Chemical Engineering Journal, 2022, 430: 133025. |
10 | 尹飞, 王翠, 童少平. rGO-Fe3O4活化过硫酸盐处理酸性红73[J]. 化工学报, 2019, 70(1): 207-213, 430. |
Yin F, Wang C, Tong S P. Treatment of acid red 73 by persulfate in the presence of rGO-Fe3O4 composite[J]. CIESC Journal, 2019, 70(1): 207-213, 430. | |
11 | Oyekunle D T, Gendy E A, Ifthikar J, et al. Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: a review[J]. Chemical Engineering Journal, 2022, 437: 135277. |
12 | Hashem E M, Hamza M A, El-Shazly A N, et al. Novel Z-Scheme/Type-Ⅱ CdS@ZnO/g-C3N4 ternary nanocomposites for the durable photodegradation of organics: kinetic and mechanistic insights[J]. Chemosphere, 2021, 277: 128730. |
13 | Liu F Z, Wang X, Liu Z Z, et al. Peroxymonosulfate enhanced photocatalytic degradation of Reactive Black 5 by ZnO-GAC: key influencing factors, stability and response surface approach[J]. Separation and Purification Technology, 2021, 279: 119754. |
14 | Gao Y W, Li S M, Li Y X, et al. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate[J]. Applied Catalysis B: Environmental, 2017, 202: 165-174. |
15 | Li R M, Hu H W, Ma Y Y, et al. Persulfate enhanced photocatalytic degradation of bisphenol A over wasted batteries-derived ZnFe2O4 under visible light[J]. Journal of Cleaner Production, 2020, 276: 124246. |
16 | Tang H L, Li R M, Fan X H, et al. A novel S-scheme heterojunction in spent battery-derived ZnFe2O4/g-C3N4 photocatalyst for enhancing peroxymonosulfate activation and visible light degradation of organic pollutant[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107797. |
17 | 刘杨, 郭洪光, 李伟, 等. 可见光下TiO2协同过硫酸盐光催化降解罗丹明[J]. 中南民族大学学报(自然科学版), 2019, 38(1): 34-38. |
Liu Y, Guo H G, Li W, et al. Photocatalytic degradation of Rhodamine B by persulfate-assisted TiO2 under visible-light irradiation[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2019, 38(1): 34-38. | |
18 | Monteagudo J M, Durán A, San Martín I, et al. Effect of sodium persulfate as electron acceptor on antipyrine degradation by solar TiO2 or TiO2/rGO photocatalysis[J]. Chemical Engineering Journal, 2019, 364: 257-268. |
19 | Grilla E, Matthaiou V, Frontistis Z, et al. Degradation of antibiotic trimethoprim by the combined action of sunlight, TiO2 and persulfate: a pilot plant study[J]. Catalysis Today, 2019, 328: 216-222. |
20 | Wang A Q, Chen Z, Zheng Z K, et al. Remarkably enhanced sulfate radical-based photo-Fenton-like degradation of levofloxacin using the reduced mesoporous MnO@MnO x microspheres[J]. Chemical Engineering Journal, 2020, 379: 122340. |
21 | Zhu B Y, Cheng H, Ma J F, et al. Bi2MoO6 microspheres for the degradation of orange Ⅱ by heterogeneous activation of persulfate under visible light[J]. Material Letters, 2020, 261: 127099. |
22 | Shah N S, Khan J A, Sayed M, et al. Solar light driven degradation of norfloxacin using as-synthesized Bi3+ and Fe2+ co-doped ZnO with the addition of H S O 5 - : toxicities and degradation pathways investigation[J]. Chemical Engineering Journal, 2018, 351: 841-855. |
23 | Dong J Q, Zhang Y, Hussain M I, et al. g-C3N4: properties, pore modifications, and photocatalytic applications[J]. Nanomaterials, 2021, 12(1): 121. |
24 | Song Y L, Huang L, Zhang X J, et al. Synergistic effect of persulfate and g-C3N4 under simulated solar light irradiation: implication for the degradation of sulfamethoxazole[J]. Journal of Hazardous Materials, 2020, 393: 122379. |
25 | Liu B C, Qiao M, Wang Y B, et al. Persulfate enhanced photocatalytic degradation of bisphenol A by g-C3N4 nanosheets under visible light irradiation[J]. Chemosphere, 2017, 189: 115-122. |
26 | 盛寒祯, 尤宏, 柳锋, 等. 可见光驱动下氧掺杂氮化碳活化过硫酸盐降解罗丹明B[J]. 环境科学学报, 2020, 40(8): 2708-2714. |
Sheng H Z, You H, Liu F, et al. Degradation of Rhodamine B by persulfate activated by oxygen-doped carbon nitride under visible light irradiation[J]. Acta Scientiae Circumstantiae, 2020, 40(8): 2708-2714. | |
27 | Jiang X W, Li J, Fang J, et al. The photocatalytic performance of g-C3N4 from melamine hydrochloride for dyes degradation with peroxymonosulfate[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 336: 54-62. |
28 | Gao H H, Yang H C, Xu J Z, et al. Strongly coupled g-C3N4 nanosheets-Co3O4 quantum dots as 2D/0D heterostructure composite for peroxymonosulfate activation[J]. Small, 2018, 14(31): 1801353. |
29 | Liu W, Zhou J B, Yao J. Shuttle-like CeO2/g-C3N4 composite combined with persulfate for the enhanced photocatalytic degradation of norfloxacin under visible light[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110062. |
30 | 杜新玉. g-C3N4/TiO2可见光活化过硫酸盐降解微污染物的研究[D]. 西安: 西安建筑科技大学, 2020. |
Du X Y. Performance on visible-light activation of persulfate by g-C3N4/TiO2 toward degradation of micropollutants[D]. Xi’an: Xi’an University of Architecture and Technology, 2020. | |
31 | 孙丹阳, 翟婷婷, 黎汉生, 等. g-C3N4的改性策略以及g-C3N4/Ti3C2异质结研究进展[J]. 化工学报, 2020, 71(S2): 1-11. |
Sun D Y, Zhai T T, Li H S, et al. Research progress on modification strategy of g-C3N4 and g-C3N4/Ti3C2 heterojunction[J]. CIESC Journal, 2020, 71(S2): 1-11. | |
32 | Zeng H X, Zhang H J, Deng L, et al. Peroxymonosulfate-assisted photocatalytic degradation of sulfadiazine using self-assembled multi-layered CoAl-LDH/g-C3N4 heterostructures: performance, mechanism and eco-toxicity evaluation[J]. Journal of Water Process Engineering, 2020, 33: 101084. |
33 | Zhang H X, Nengzi L C, Wang Z J, et al. Construction of Bi2O3/CuNiFe LDHs composite and its enhanced photocatalytic degradation of lomefloxacin with persulfate under simulated sunlight[J]. Journal of Hazardous Materials, 2020, 383: 121236. |
34 | Jin C Y, Kang J, Li Z L, et al. Enhanced visible light photocatalytic degradation of tetracycline by MoS2/Ag/g-C3N4 Z-scheme composites with peroxymonosulfate[J]. Applied Surface Science, 2020, 514: 146076. |
35 | Zhang J J, Zhao X, Wang Y B, et al. Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C3N4 [J]. Applied Catalysis B: Environmental, 2018, 237: 976-985. |
36 | Chen D N, Xie Z J, Zeng Y Q, et al. Accelerated photocatalytic degradation of quinolone antibiotics over Z-scheme MoO3/g-C3N4 heterostructure by peroxydisulfate under visible light irradiation: mechanism; kinetic; and products[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104: 250-259. |
37 | 杨波, 张永丽, 郭洪光, 等. 磁性卤氧化铋耦合过硫酸盐催化光降解AO7[J]. 黑龙江大学自然科学学报, 2017, 34(2): 196-201. |
Yang B, Zhang Y L, Guo H G, et al. Persulfate-assisted photocatalytic degradation of AO7 by magnetic bismuth oxyhalide compounds[J]. Journal of Natural Science of Heilongjiang University, 2017, 34(2): 196-201. | |
38 | 王敬荃, 张永丽, 翟官星, 等. BiOI/Fe3O4光催化耦合过一硫酸氢盐降解酸性橙Ⅱ研究[J]. 化工新型材料, 2018, 46(9): 209-212. |
Wang J Q, Zhang Y L, Zhai G X, et al. Activited peroxymonosulfate (PMS) degradation of acid orange Ⅱ by visible light-driven photocatalytic material BiOI/Fe3O4 [J]. New Chemical Materials, 2018, 46(9): 209-212. | |
39 | Lin K Y A, Zhang Z Y. α-Sulfur as a metal-free catalyst to activate peroxymonosulfate under visible light irradiation for decolorization[J]. RSC Advances, 2016, 6(18): 15027-15034. |
40 | Tao Y F, Wei M Y, Xia D S, et al. Polyimides as metal-free catalysts for organic dye degradation in the presence peroxymonosulfate under visible light irradiation[J]. RSC Advances, 2015, 5(119): 98231-98240. |
41 | Zhang Y, Zhou J B, Chen X, et al. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway[J]. Chemical Engineering Journal, 2019, 369: 745-757. |
42 | Du X D, Zhou M H. Strategies to enhance catalytic performance of metal-organic frameworks in sulfate radical-based advanced oxidation processes for organic pollutants removal[J]. Chemical Engineering Journal, 2021, 403: 126346. |
43 | Zhang Y, Zhou J B, Chen J H . et al. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation[J]. Journal of Hazardous Materials, 2020, 392: 122315. |
44 | Wu Y Q, Zhao X Y, Tian J T, et al. Heterogeneous catalytic system of photocatalytic persulfate activation by novel Bi2WO6 coupled magnetic biochar for degradation of ciprofloxacin[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651: 129667. |
45 | Wang M, Jin C Y, Kang J, et al. CuO/g-C3N4 2D/2D heterojunction photocatalysts as efficient peroxymonosulfate activators under visible light for oxytetracycline degradation: characterization, efficiency and mechanism[J]. Chemical Engineering Journal, 2021, 416: 128118. |
46 | Zhu Z Y, Tang H F, Du Y, et al. Filter‐membrane treatment of continuous-flow tetracycline through photocatalysis-assisted peroxydisulfate oxidation[J]. AIChE Journal, 2022, 68(6): 17654. |
47 | Lin H, Tang X, Wang J, et al. Enhanced visible-light photocatalysis of clofibric acid using graphitic carbon nitride modified by cerium oxide nanoparticles[J]. Journal of Hazardous Materials, 2021, 405: 124204. |
48 | Sarkar P, Roy D, Bera B, et al. Efficient photocatalytic degradation of ciprofloxacin using novel dual Z-scheme gCN/CuFe2O4/MoS2 mediated peroxymonosulphate activation[J]. Chemical Engineering Journal, 2022, 430: 132834. |
49 | Surendra B S. Green engineered synthesis of Ag-doped CuFe2O4: characterization, cyclic voltammetry and photocatalytic studies[J]. Journal of Science: Advanced Materials and Devices, 2018, 3(1): 44-50. |
50 | Surendra B S, Veerabhdraswamy M, Anantharaju K S, et al. Green and chemical-engineered CuFe2O4: characterization, cyclic voltammetry, photocatalytic and photoluminescent investigation for multifunctional applications[J]. Journal of Nanostructure in Chemistry, 2018, 8(1): 45-59. |
51 | Wadhai S, Jadhav Y, Thakur P. Synthesis of metal-free phosphorus doped graphitic carbon nitride-P25 (TiO2) composite: characterization, cyclic voltammetry and photocatalytic hydrogen evolution[J]. Solar Energy Materials and Solar Cells, 2021, 223: 110958. |
52 | Zhang Z, Du C Y, Zhang Y, et al. Degradation of oxytetracycline by magnetic MOFs heterojunction photocatalyst with persulfate: high stability and wide range[J]. Environmental Science and Pollution Research, 2022, 29(20): 30019-30029. |
53 | Gao Y W, Zhang Z Y, Li S M, et al. Insights into the mechanism of heterogeneous activation of persulfate with a clay/iron-based catalyst under visible LED light irradiation[J]. Applied Catalysis B: Environmental, 2016, 185: 22-30. |
54 | Zhang L P, Ran J R, Qiao S Z, et al. Characterization of semiconductor photocatalysts[J]. Chemical Society Reviews, 2019, 48(20): 5184-5206. |
55 | Chen R Y, Dou X C, Xia J Z, et al. Boosting peroxymonosulfate activation over Bi2MoO6/CuWO4 to rapidly degrade tetracycline: intermediates and mechanism[J]. Separation and Purification Technology, 2022, 296: 121345. |
56 | Xiang W M, Ji Q Y, Xu C M, et al. Accelerated photocatalytic degradation of iohexol over Co3O4/g-C3N4/Bi2O2CO3 of p-n/n-n dual heterojunction under simulated sunlight by persulfate[J]. Applied Catalysis B: Environmental, 2021, 285: 119847. |
57 | Zhang T H, Liu Y J, Rao Y D, et al. Enhanced photocatalytic activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light[J]. Chemical Engineering Journal, 2020, 384: 123350. |
58 | Hu J Y, Tian K, Jiang H. Improvement of phenol photodegradation efficiency by a combined g-C3N4/Fe(Ⅲ)/persulfate system[J]. Chemosphere, 2016, 148: 34-40. |
59 | Shen C H, Wen X J, Fei Z H, et al. Visible-light-driven activation of peroxymonosulfate for accelerating ciprofloxacin degradation using CeO2/Co3O4 p-n heterojunction photocatalysts[J]. Chemical Engineering Journal, 2020, 391: 123612. |
60 | Zhou J B, Liu W, Cai W Q. The synergistic effect of Ag/AgCl@ZIF-8 modified g-C3N4 composite and peroxymonosulfate for the enhanced visible-light photocatalytic degradation of levofloxacin[J]. Science of the Total Environment, 2019, 696: 133962. |
61 | Zhao C, Wang J S, Chen X, et al. Bifunctional Bi12O17Cl2/MIL-100(Fe) composites toward photocatalytic Cr(Ⅵ) sequestration and activation of persulfate for bisphenol A degradation[J]. Science of the Total Environment, 2021, 752: 141901. |
62 | Xia D H, He H J W, Liu H D, et al. Persulfate-mediated catalytic and photocatalytic bacterial inactivation by magnetic natural ilmenite[J]. Applied Catalysis B: Environmental, 2018, 238: 70-81. |
63 | Hu Y Y, Li Z K, Yang J H, et al. Degradation of methylparaben using BiOI-hydrogel composites activated peroxymonosulfate under visible light irradiation[J]. Chemical Engineering Journal, 2019, 360: 200-211. |
64 | Zhao J H, Wang Y Z, Li N, et al. Efficient degradation of ciprofloxacin by magnetic γ-Fe2O3-MnO2 with oxygen vacancy in visible-light/peroxymonosulfate system[J]. Chemosphere, 2021, 276: 130257. |
65 | Feng Q Q, Zhou J B, Zhang Y. Coupling Bi2MoO6 with persulfate for photocatalytic oxidation of tetracycline hydrochloride under visible light[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(21): 19108-19118. |
66 | Zhang J L, Zhai C Y, Zhao W, et al. Insight into combining visible-light photocatalysis with transformation of dual metal ions for enhancing peroxymonosulfate activation over dibismuth copper oxide[J]. Chemical Engineering Journal, 2020, 390: 124582. |
67 | Wang X Y, Wang A Q, Ma J. Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites[J]. Journal of Hazardous Materials, 2017, 336: 81-92. |
68 | Zhang H X, Nengzi L C, Li X L, et al. Construction of CuBi2O4/MnO2 composite as Z-scheme photoactivator of peroxymonosulfate for degradation of antibiotics[J]. Chemical Engineering Journal, 2020, 386: 124011. |
69 | 马英豪. 铜铁水滑石光活化过硫酸盐降解甲基紫的研究[D]. 长沙: 湖南大学, 2019. |
Ma Y H. Sulfate radical induced degradation of methyl violet azo dye with CuFe layered doubled hydroxide as heterogeneous photoactivator of persulfate[D]. Changsha: Hunan University, 2019. | |
70 | Heidarpour H, Padervand M, Soltanieh M, et al. Enhanced decolorization of Rhodamine B solution through simultaneous photocatalysis and persulfate activation over Fe/C3N4 photocatalyst[J]. Chemical Engineering Research and Design, 2020, 153: 709-720. |
71 | 沙俊鹏, 唐海. 纳米TiO2/介孔ZSM-5协同过硫酸盐光催化降解硝基苯酚废水[J]. 安徽工程大学学报, 2015, 30(1): 32-35. |
Sha J P, Tang H. The photocatalytic degradation of pNP wastewater by nano TiO2/mesoporous ZSM-5 synergized with persulfate[J]. Journal of Anhui Polytechnic University, 2015, 30(1): 32-35. | |
72 | Devi L G, Rajashekhar K E. A kinetic model based on non-linear regression analysis is proposed for the degradation of phenol under UV/solar light using nitrogen doped TiO2 [J]. Journal of Molecular Catalysis A: Chemical, 2011, 334(1-2): 65-76. |
73 | Lin K Y A, Zhang Z Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal, 2017, 313: 1320-1327. |
74 | Ahmed S F, Mofijur M, Nuzhat S, et al. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater[J]. Journal of Hazardous Materials, 2021, 416: 125912. |
75 | Ji Q Y, Cheng X Y, Sun D Y, et al. Persulfate enhanced visible light photocatalytic degradation of iohexol by surface-loaded perylene diimide/acidified biochar[J]. Chemical Engineering Journal, 2021, 414: 128793. |
76 | Wang W J, Wang H N, Li G Y, et al. Visible light activation of persulfate by magnetic hydrochar for bacterial inactivation: Efficiency, recyclability and mechanisms[J]. Water Research, 2020, 176: 115746. |
77 | 王韩纳. 过硫酸盐的可见光活化及其对细菌的杀灭机理研究[D]. 广州: 广东工业大学, 2019. |
Wang H N. Activation of persulfate for water disinfection: efficiency and mechanisms[D]. Guangzhou: Guangdong University of Technology, 2019. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[8] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[9] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[10] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[13] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[14] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[15] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 308
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 754
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||