CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2322-2334.DOI: 10.11949/0438-1157.20230208
• Reviews and monographs • Previous Articles Next Articles
Jing LI(), Conghao SHEN, Daliang GUO, Jing LI(), Lizheng SHA(), Xin TONG
Received:
2023-03-09
Revised:
2023-05-08
Online:
2023-07-27
Published:
2023-06-05
Contact:
Jing LI, Lizheng SHA
李靖(), 沈聪浩, 郭大亮, 李静(), 沙力争(), 童欣
通讯作者:
李静,沙力争
作者简介:
李靖(2000—),男,硕士研究生,z15087668475@163.com
基金资助:
CLC Number:
Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components[J]. CIESC Journal, 2023, 74(6): 2322-2334.
李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334.
Add to citation manager EndNote|Ris|BibTeX
原料 | 静电纺丝参数 | 木质素纤维直径 | 木质素基碳纤维性能 | 文献 |
---|---|---|---|---|
L | 电压: 20 kV 距离: 15 cm 针规: 20 G | 26.11 μm ± 8 μm | 比表面积: 65.99 m2/g 孔径: 3.75 nm 孔容: 0.06 cm3/g 直径: 21.05 μm ± 9.00 μm | [ |
L/PAN | 电压: 15 kV 流速: 5 μl/min 距离: 20 cm 针规: 22 G | 1920 nm± 150 nm | 抗张强度: 22 MPa ± 1 MPa 拉伸模量: 2.4 GPa ± 0.2 GPa 伸长率: 1.2% ± 0.1% | [ |
L/PEO | 电压: 15 kV 流速: 0.31 ml/h 距离: 15 cm 针规: 22 G | 1030 nm | 直径: 660 nm | [ |
L/PLA | 电压: 7.7 kV 流速: 30 μl/min 距离: 10 cm | 200~600 nm | 比电容: 214.4 F/g 500次充放电循环后保持611 mA·h/g | [ |
L/PVA | 电压: 17 kV 流速: 0.5 ml/h 距离: 20 cm 针规: 0.6 mm | 182 nm ± 27 nm | 直径: 21.05 μm ± 9.00 μm 比表面积: 1419 m2/g 平均孔径: 2.2 nm | [ |
L/PVP/MgO | 电压: 15 kV 流速: 0.2 ml/h 距离: 15 cm | >124 nm | 比表面积:1140 m2/g 孔容: 0.627 cm3/g | [ |
Table 1 The main process conditions and fiber properties of lignin-based carbon fibers prepared by electrospinning
原料 | 静电纺丝参数 | 木质素纤维直径 | 木质素基碳纤维性能 | 文献 |
---|---|---|---|---|
L | 电压: 20 kV 距离: 15 cm 针规: 20 G | 26.11 μm ± 8 μm | 比表面积: 65.99 m2/g 孔径: 3.75 nm 孔容: 0.06 cm3/g 直径: 21.05 μm ± 9.00 μm | [ |
L/PAN | 电压: 15 kV 流速: 5 μl/min 距离: 20 cm 针规: 22 G | 1920 nm± 150 nm | 抗张强度: 22 MPa ± 1 MPa 拉伸模量: 2.4 GPa ± 0.2 GPa 伸长率: 1.2% ± 0.1% | [ |
L/PEO | 电压: 15 kV 流速: 0.31 ml/h 距离: 15 cm 针规: 22 G | 1030 nm | 直径: 660 nm | [ |
L/PLA | 电压: 7.7 kV 流速: 30 μl/min 距离: 10 cm | 200~600 nm | 比电容: 214.4 F/g 500次充放电循环后保持611 mA·h/g | [ |
L/PVA | 电压: 17 kV 流速: 0.5 ml/h 距离: 20 cm 针规: 0.6 mm | 182 nm ± 27 nm | 直径: 21.05 μm ± 9.00 μm 比表面积: 1419 m2/g 平均孔径: 2.2 nm | [ |
L/PVP/MgO | 电压: 15 kV 流速: 0.2 ml/h 距离: 15 cm | >124 nm | 比表面积:1140 m2/g 孔容: 0.627 cm3/g | [ |
1 | 魏枫. 聚磷腈衍生碳修饰碳纤维电极的制备及其复合结构超级电容器的研究[D]. 赣州: 江西理工大学, 2022. |
Wei F. Preparation of polyphosphazene-derived carbon modified carbon fiber electrode and study on its composite structure supercapacitor[D].Ganzhou: Jiangxi University of Science and Technology, 2022. | |
2 | 雍智鹏. 基于聚合物凝胶电解质赝电容超级电容器的制备与性能研究[D]. 长春: 长春工业大学, 2022. |
Yong Z P. Study on preparation and performance of pseudocapacitor based on polymer gel electrolyte[D].Changchun: Changchun University of Technology, 2022. | |
3 | Chen T Q, Liu Y, Pan L K, et al. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance[J]. Journal of Materials Chemistry A, 2014, 2(12): 4117-4121. |
4 | Kashani H, Chen L Y, Ito Y, et al. Bicontinuous nanotubular graphene-polypyrrole hybrid for high performance flexible supercapacitors[J]. Nano Energy, 2016, 19: 391-400. |
5 | Deng J, Li M M, Wang Y. Biomass-derived carbon: synthesis and applications in energy storage and conversion [J]. Green Chemistry, 2016, 18(18): 4824-4854. |
6 | Espinoza-Acosta J L, Torres-Chávez P I, Olmedo-Martínez J L, et al. Lignin in storage and renewable energy applications: a review[J]. Journal of Energy Chemistry, 2018, 27(5): 1422-1438. |
7 | Wu X Y, Jiang J H, Wang C M, et al. Lignin-derived electrochemical energy materials and systems[J]. Biofuels, Bioproducts and Biorefining, 2020, 14(3): 650-672. |
8 | Zhu M N, Liu H A, Cao Q P, et al. Electrospun lignin-based carbon nanofibers as supercapacitor electrodes[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(34): 12831-12841. |
9 | Wang S C, Bai J X, Innocent M T, et al. Lignin-based carbon fibers: formation, modification and potential applications[J]. Green Energy & Environment, 2022, 7(4): 578-605. |
10 | Zhou L F, You X Y, Wang L J, et al. Fabrication of graphitized carbon fibers from fusible lignin and their application in supercapacitors[J]. Polymers, 2023, 15(8): 1947. |
11 | Bostan L, Hosseinaei O, Fourné R, et al. Upscaling of lignin precursor melt spinning by bicomponent spinning and its use for carbon fibre production[J]. Philosophical Transactions of the Royal Society A, 2021, 379(2209): 20200334. |
12 | Luo Y X, Qu W D, Cochran E, et al. Enabling high-quality carbon fiber through transforming lignin into an orientable and melt-spinnable polymer[J]. Journal of Cleaner Production, 2021, 307: 127252. |
13 | Jia Z, Lu C X, Liu Y D, et al. Lignin/polyacrylonitrile composite hollow fibers prepared by wet-spinning method[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2838-2842. |
14 | Jin J, Ogale A A. Carbon fibers derived from wet-spinning of equi-component lignin/polyacrylonitrile blends[J]. Journal of Applied Polymer Science, 2018, 135(8): 45903. |
15 | Zhang M, Ogale A A. Effect of temperature and concentration of acetylated-lignin solutions on dry-spinning of carbon fiber precursors[J]. Journal of Applied Polymer Science, 2016, 133(45): 43663 |
16 | Zhang M, Jin J, Ogale A. Carbon fibers from UV-assisted stabilization of lignin-based precursors[J]. Fibers, 2015, 3(4): 184-196. |
17 | Zhang M, Ogale A A. Carbon fibers from dry-spinning of acetylated softwood kraft lignin[J]. Carbon, 2014, 69: 626-629. |
18 | Worarutariyachai T, Chuangchote S. Carbon fibers derived from pure alkali lignin fibers through electrospinning with carbonization[J]. BioResources, 2020, 15(2): 2412-2427. |
19 | Ding R, Wu H C, Thunga M, et al. Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends[J]. Carbon, 2016, 100: 126-136. |
20 | Wang S C, Innocent M T, Wang Q Q, et al. Kraft lignin-based piezoresistive sensors: effect of chemical structure on the microstructure of ultrathin carbon fibers[J]. International Journal of Biological Macromolecules, 2020, 151: 730-739. |
21 | Culebras M, Geaney H, Beaucamp A, et al. Bio-derived carbon nanofibres from lignin as high-performance Li-ion anode materials[J]. ChemSusChem, 2019, 12(19): 4516-4521. |
22 | Wei J Y, Geng S Y, Pitkänen O, et al. Green carbon nanofiber networks for advanced energy storage[J]. ACS Applied Energy Materials, 2020, 3(4): 3530-3540. |
23 | Ma C, Li Z Y, Li J J, et al. Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors[J]. Applied Surface Science, 2018, 456: 568-576. |
24 | Li Y M, Cui D X, Tong Y J, et al. Study on structure and thermal stability properties of lignin during thermostabilization and carbonization[J]. International Journal of Biological Macromolecules, 2013, 62: 663-669. |
25 | Jin J, Yu B J, Shi Z Q, et al. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries[J]. Journal of Power Sources, 2014, 272: 800-807. |
26 | Zhou M, Bahi A, Zhao Y P, et al. Enhancement of charge transport in interconnected lignin-derived carbon fibrous network for flexible battery-supercapacitor hybrid device[J]. Chemical Engineering Journal, 2021, 409: 128214. |
27 | Stojanovska E, Pampal E S, Kilic A, et al. Developing and characterization of lignin-based fibrous nanocarbon electrodes for energy storage devices[J]. Composites Part B: Engineering, 2019, 158: 239-248. |
28 | Jayawickramage R A P, Balkus K J, Ferraris J P. Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors[J]. Nanotechnology, 2019, 30(35): 355402. |
29 | Jayawickramage R A P, Ferraris J P. High performance supercapacitors using lignin based electrospun carbon nanofiber electrodes in ionic liquid electrolytes[J]. Nanotechnology, 2019, 30(15): 155402. |
30 | Liu L L, Niu Z Q, Chen J. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations[J]. Chemical Society Reviews, 2016, 45(15): 4340-4363. |
31 | Beaucamp A, Muddasar M, Amiinu I S, et al. Lignin for energy applications—state of the art, life cycle, technoeconomic analysis and future trends[J]. Green Chemistry, 2022, 24(21): 8193-8226. |
32 | Sun S C, Xu Y, Wen J L, et al. Recent advances in lignin-based carbon fibers (LCFs): precursors, fabrications, properties, and applications[J]. Green Chemistry, 2022, 24(15): 5709-5738. |
33 | Yi Y J, Zhuang J S, Liu C, et al. Emerging lignin-based materials in electrochemical energy systems[J]. Energies, 2022, 15(24): 9450. |
34 | Hu Z R, Li D D, Kim T H, et al. Lignin-based/polypyrrole carbon nanofiber electrode with enhanced electrochemical properties by electrospun method[J]. Frontiers in Chemistry, 2022, 10: 841956. |
35 | Qu W D, Hu P Y, Liu J, et al. Lignin-based carbon fiber: a renewable and low-cost substitute towards featured fiber-shaped pseudocapacitor electrodes[J]. Journal of Cleaner Production, 2022, 343: 131030. |
36 | Thielke M W, Lopez Guzman S, Victoria Tafoya J P, et al. Full lignin-derived electrospun carbon materials as electrodes for supercapacitors[J]. Frontiers in Materials, 2022, 9: 859872. |
37 | Wang Q Q, Ma W J, Yin E Q, et al. Melt spinning of low-cost activated carbon fiber with a tunable pore structure for high-performance flexible supercapacitors[J]. ACS Applied Energy Materials, 2020, 3(9): 9360-9368. |
38 | Fu F B, Yang D J, Fan Y K, et al. Nitrogen-rich accordion-like lignin porous carbon via confined self-assembly template and in situ mild activation strategy for high-performance supercapacitors[J]. Journal of Colloid and Interface Science, 2022, 628: 90-99. |
39 | Jian W, Zhang W, Wei X, et al. Engineering pore nanostructure of carbon cathodes for zinc ion hybrid supercapacitors[J]. Advanced Functional Materials, 2022, 32(49): 2209914. |
40 | Hong R T, Zhang Z L, Pan S R, et al. Construction of PVA-lignosulfonate hydrogels for improved mechanical performances and all-in-one flexible supercapacitors[J]. International Journal of Biological Macromolecules, 2023, 225: 1494-1504. |
41 | Du B Y, Wang X, Chai L F, et al. Fabricating lignin-based carbon nanofibers as versatile supercapacitors from food wastes[J]. International Journal of Biological Macromolecules, 2022, 194: 632-643. |
42 | Du B Y, Chai L F, Zhu H W, et al. Effective fractionation strategy of sugarcane bagasse lignin to fabricate quality lignin-based carbon nanofibers supercapacitors[J]. International Journal of Biological Macromolecules, 2021, 184: 604-617. |
43 | Du B Y, Zhu H W, Chai L F, et al. Effect of lignin structure in different biomass resources on the performance of lignin-based carbon nanofibers as supercapacitor electrode[J]. Industrial Crops and Products, 2021, 170: 113745. |
44 | Cao Q P, Zhu M N, Chen J A, et al. Novel lignin-cellulose-based carbon nanofibers as high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1210-1221. |
45 | Cao Q P, Zhang Y C, Chen J A, et al. Electrospun biomass based carbon nanofibers as high-performance supercapacitors[J]. Industrial Crops and Products, 2020, 148: 112181. |
46 | Zheng H, Cao Q P, Zhu M N, et al. Biomass-based flexible nanoscale carbon fibers: effects of chemical structure on energy storage properties[J]. Journal of Materials Chemistry A, 2021, 9(16): 10120-10134. |
47 | Han X, Wei Q L, Su Y Y, et al. Molecular modification of lignin-based carbon materials: influence of supramolecular bonds on the properties[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 1969-1983. |
48 | Yang J Q, Wang Y X, Luo J L, et al. Facile preparation of self-standing hierarchical porous nitrogen-doped carbon fibers for supercapacitors from plant protein-lignin electrospun fibers[J]. ACS Omega, 2018, 3(4): 4647-4656. |
49 | Thongsai N, Hrimchum K, Aussawasathien D. Carbon fiber mat from palm-kernel-shell lignin/polyacrylonitrile as intrinsic-doping electrode in supercapacitor[J]. Sustainable Materials and Technologies, 2021, 30: e00341. |
50 | You X Y, Duan J L, Koda K, et al. Preparation of electric double layer capacitors (EDLCs) from two types of electrospun lignin fibers[J]. Holzforschung, 2016, 70: 661-671. |
51 | Lei D Y, Li X D, Seo M K, et al. NiCo2O4 nanostructure-decorated PAN/lignin based carbon nanofiber electrodes with excellent cyclability for flexible hybrid supercapacitors[J]. Polymer, 2017, 132: 31-40. |
52 | Youe W J, Kim S J, Lee S M, et al. MnO2-deposited lignin-based carbon nanofiber mats for application as electrodes in symmetric pseudocapacitors[J]. International Journal of Biological Macromolecules, 2018, 112: 943-950. |
53 | Guo C Y, Ma H T, Zhang Q T, et al. Nano MnO2 radially grown on lignin-based carbon fiber by one-step solution reaction for supercapacitors with high performance[J]. Nanomaterials, 2020, 10(3): 594. |
54 | Yu B M, Gele A R, Wang L P. Iron oxide/lignin-based hollow carbon nanofibers nanocomposite as an application electrode materials for supercapacitors[J]. International Journal of Biological Macromolecules, 2018, 118: 478-484. |
55 | Yun S I, Kim S H, Kim D W, et al. Facile preparation and capacitive properties of low-cost carbon nanofibers with ZnO derived from lignin and pitch as supercapacitor electrodes[J]. Carbon, 2019, 149: 637-645. |
56 | Shen H, Gele A R. Facile synthesis of N-doped lignin-based carbon nanofibers decorated with iron oxides for flexible supercapacitor electrodes[J]. Inorganic Chemistry Communications, 2021, 128: 108607. |
57 | Wang L P, Aorigele, Sun Y X. Preparation of iron oxide particle-decorated lignin-based carbon nanofibers as electrode material for pseudocapacitor[J]. Journal of Wood Chemistry and Technology, 2017, 37(6): 423-432. |
58 | Schlee P, Hosseinaei O, Baker D, et al. From waste to wealth: from kraft lignin to free-standing supercapacitors[J]. Carbon, 2019, 145: 470-480. |
59 | García-Mateos F J, Ruiz-Rosas R, María Rosas J, et al. Activation of electrospun lignin-based carbon fibers and their performance as self-standing supercapacitor electrodes[J]. Separation and Purification Technology, 2020, 241: 116724. |
60 | Jeong J H, Lee Y H, Kim B H. Relationship between microstructure and electrochemical properties of 2lignin-derived carbon nanofibers prepared by thermal treatment[J]. Synthetic Metals, 2020, 260: 116287. |
61 | Jung H Y, Lee J S, Han H T, et al. Lignin-based materials for sustainable rechargeable batteries[J]. Polymers, 2022, 14(4): 673. |
62 | Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
63 | Tenhaeff W E, Rios O, More K, et al. Highly robust lithium ion battery anodes from lignin: an abundant, renewable, and low-cost material[J]. Advanced Functional Materials, 2014, 24(1): 86-94. |
64 | Yuan J M, Wang K, Su T T, et al. Multifunctional organic corncob lignin and inorganic lithium nitride composite films as artificial protective layer to achieve high-performance Li metal anodes[J]. Industrial Crops and Products, 2023, 193: 116127. |
65 | Wang S X, Yang L P, Stubbs L P, et al. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12275-12282. |
66 | Culebras M, Collins G A, Beaucamp A, et al. Lignin/Si hybrid carbon nanofibers towards highly efficient sustainable Li-ion anode materials[J]. Engineered Science, 2022, 17, 195-203. |
67 | Peuvot K, Hosseinaei O, Tomani P, et al. Lignin based electrospun carbon fiber anode for sodium ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(10): A1984-A1990. |
68 | Jia H, Sun N, Dirican M, et al. Electrospun kraft lignin/cellulose acetate-derived nanocarbon network as an anode for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44368-44375. |
69 | Zhang Y, Zhu Y Y, Zhang J Z, et al. Optimizing the crystallite structure of lignin-based nanospheres by resinification for high-performance sodium-ion battery anodes[J]. Energy Technology, 2020, 8(1): 1900694. |
70 | Wang X, Li X, Lu Z, et al. Constructing porous lignin-based carbon nanofiber anodes with flexibility for high-performance lithium/sodium-ion batteries[J]. Materials Today Sustainability, 2022, 20: 100234. |
[1] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[2] | Chi YIN, Zhengguo ZHANG, Ziye LING, Xiaoming FANG. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation [J]. CIESC Journal, 2023, 74(4): 1795-1804. |
[3] | Zhongliang XIAO, Bilu YIN, Liubin SONG, Yinjie KUANG, Tingting ZHAO, Cheng LIU, Rongyao YUAN. Research progress of waste lithium-ion battery recycling process and its safety risk analysis [J]. CIESC Journal, 2023, 74(4): 1446-1456. |
[4] | Lei ZHONG, Xueqing QIU, Wenli ZHANG. Advances in lignin-derived carbon anodes for alkali metal ion batteries [J]. CIESC Journal, 2022, 73(8): 3369-3380. |
[5] | Lijing HUANG, Jijiao HUANG, Penghui LI, Zhinuo LIU, Kangjie JIANG, Wenjuan WU. Hydroxypropyl sulfomethylation modification of lignin and its effect on cellulase hydrolysis [J]. CIESC Journal, 2022, 73(7): 3232-3239. |
[6] | Jiangli WANG, Min XUE, Chengke ZHAO, Fengxia YUE. Influences of lignin fractionation on its utilization [J]. CIESC Journal, 2022, 73(5): 1894-1907. |
[7] | Hang GUO, Wenli HAN, Xiaoling DONG, Wencui LI. Adjusting carbonization process to optimize sodium storage performance of coal-based hard carbon anode [J]. CIESC Journal, 2022, 73(4): 1794-1806. |
[8] | Pengpeng WANG, Yanggang JIA, Xia SHAO, Jie CHENG, Aiqin MAO, Jie TAN, Daolai FANG. Preparation and lithium storage performance of K+-doped spinel (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 high-entropy oxide anode materials [J]. CIESC Journal, 2022, 73(12): 5625-5637. |
[9] | Boyang REN, Xiaogang CHE, Siyu LIU, Man WANG, Xinghua HAN, Ting DONG, Juan YANG. Preparation of coal-based porous carbon nanosheets by molten salt strategy as anodes for sodium-ion batteries [J]. CIESC Journal, 2022, 73(10): 4745-4753. |
[10] | Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Progress and prospect of recycling spent lithium battery cathode materials by hydrometallurgy [J]. CIESC Journal, 2022, 73(1): 85-96. |
[11] | LUO Weili, WANG Wenwen, PAN Quanwen, GE Tianshu, WANG Ruzhu. Heat storage performance of composite adsorbent with activated carbon fiber [J]. CIESC Journal, 2021, 72(S1): 554-559. |
[12] | Huan WANG, Fangbao FU, Qiong LI, Yuebin XI, Dongjie YANG. Research progress on the preparation of lignin-derived carbon materials and their application in catalysis [J]. CIESC Journal, 2021, 72(9): 4445-4457. |
[13] | FAN Honggang, ZHAO Dandan, GU Jing, WANG Yazhuo, YUAN Haoran, CHEN Yong. Study on the pyrolysis characteristics of binary mixture of biomass three-component [J]. CIESC Journal, 2021, 72(7): 3788-3800. |
[14] | LI Xiaoxue, NIU Xiaopo, WANG Qingfa. Study on hydrodeoxygenation performance of hierarchical Pt-Ni/ZSM-5 for lignin derivatives [J]. CIESC Journal, 2021, 72(5): 2626-2637. |
[15] | WANG Jing, HAN Qiaoning, LEI Yiting, TANG Man, CHEN Lihong, CHE Junda, LIU Zuguang. One-step preparation of oxygen-enriched lignin activated carbon and its methylene blue adsorption performance [J]. CIESC Journal, 2021, 72(5): 2826-2836. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||