CIESC Journal ›› 2024, Vol. 75 ›› Issue (2): 505-519.DOI: 10.11949/0438-1157.20231100
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Wenjun LI1(), Zhongyang ZHAO1, Zhen NI2, Can ZHOU2, Chenghang ZHENG1,2(), Xiang GAO1,2
Received:
2023-10-26
Revised:
2024-01-09
Online:
2024-04-10
Published:
2024-02-25
Contact:
Chenghang ZHENG
李文俊1(), 赵中阳1, 倪震2, 周灿2, 郑成航1,2(), 高翔1,2
通讯作者:
郑成航
作者简介:
李文俊(1999—),男,硕士,工程师,liwenjun01@zjenergy.com.cn
基金资助:
CLC Number:
Wenjun LI, Zhongyang ZHAO, Zhen NI, Can ZHOU, Chenghang ZHENG, Xiang GAO. CFD numerical simulation of wet flue gas desulfurization:performance improvement based on gas-liquid mass transfer enhancement[J]. CIESC Journal, 2024, 75(2): 505-519.
李文俊, 赵中阳, 倪震, 周灿, 郑成航, 高翔. 基于气-液传质强化的湿法烟气脱硫CFD模拟研究[J]. 化工学报, 2024, 75(2): 505-519.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
塔高/m | 33.7 |
吸收塔塔径/m | 16 |
气液分布环数量/个 | 3 |
喷淋层数量/层 | 4 |
喷淋层高度/m | 11.4,13.9,16.4,18.9 |
筛板安装高度/m | 9.7 |
喷嘴数量/个 | 4×180 |
喷嘴喷淋角度/(°) | 120 |
Table 1 The structure parameters of desulfurization tower
参数 | 数值 |
---|---|
塔高/m | 33.7 |
吸收塔塔径/m | 16 |
气液分布环数量/个 | 3 |
喷淋层数量/层 | 4 |
喷淋层高度/m | 11.4,13.9,16.4,18.9 |
筛板安装高度/m | 9.7 |
喷嘴数量/个 | 4×180 |
喷嘴喷淋角度/(°) | 120 |
参数 | 数值 |
---|---|
烟气流量/(m3/h) | 2779200 |
烟气入口温度/K | 373.15 |
烟气SO2浓度/(mg/m3) | 1680 |
浆液流量/(m3/h) | 33750 |
浆液粒径/mm | 1.5 |
浆液初始pH | 5.5 |
Table 2 The parameters settings of model
参数 | 数值 |
---|---|
烟气流量/(m3/h) | 2779200 |
烟气入口温度/K | 373.15 |
烟气SO2浓度/(mg/m3) | 1680 |
浆液流量/(m3/h) | 33750 |
浆液粒径/mm | 1.5 |
浆液初始pH | 5.5 |
项目 | 边界条件 |
---|---|
连续相 | |
脱硫塔入口 | 速度入口 |
脱硫塔出口 | 压力出口 |
离散相 | |
脱硫塔壁面 | 捕捉 |
脱硫塔出口及入口 | 逃离 |
除雾器 | 捕捉 |
气液分配环 | 反射 |
Table 3 The boundary conditions of model
项目 | 边界条件 |
---|---|
连续相 | |
脱硫塔入口 | 速度入口 |
脱硫塔出口 | 压力出口 |
离散相 | |
脱硫塔壁面 | 捕捉 |
脱硫塔出口及入口 | 逃离 |
除雾器 | 捕捉 |
气液分配环 | 反射 |
工况 | 负荷/MW | 入口SO2浓度/(mg/m3) | 出口SO2浓度/(mg/m3) | 浆液pH | 脱硫 效率/% |
---|---|---|---|---|---|
1 | 667 | 1927.22 | 20.26 | 4.62 | 92.43 |
2 | 664 | 1838.49 | 20.55 | 4.91 | 94.28 |
3 | 663 | 1918.39 | 20.77 | 4.67 | 93.18 |
4 | 650 | 1865.04 | 23.02 | 4.97 | 95.13 |
5 | 618 | 1870.65 | 19.85 | 5.34 | 97.04 |
6 | 612 | 1831.43 | 24.18 | 5.26 | 98.38 |
7 | 597 | 1650.07 | 19.79 | 5.29 | 98.80 |
8 | 584 | 1426.23 | 13.56 | 5.35 | 99.05 |
9 | 576 | 1405.45 | 14.07 | 5.33 | 99.00 |
10 | 547 | 1749.27 | 14.31 | 5.36 | 99.18 |
11 | 534 | 1494.17 | 13.50 | 5.33 | 99.40 |
12 | 512 | 1552.55 | 17.24 | 5.28 | 98.89 |
Table 4 Test desulfurization efficiency under different conditions
工况 | 负荷/MW | 入口SO2浓度/(mg/m3) | 出口SO2浓度/(mg/m3) | 浆液pH | 脱硫 效率/% |
---|---|---|---|---|---|
1 | 667 | 1927.22 | 20.26 | 4.62 | 92.43 |
2 | 664 | 1838.49 | 20.55 | 4.91 | 94.28 |
3 | 663 | 1918.39 | 20.77 | 4.67 | 93.18 |
4 | 650 | 1865.04 | 23.02 | 4.97 | 95.13 |
5 | 618 | 1870.65 | 19.85 | 5.34 | 97.04 |
6 | 612 | 1831.43 | 24.18 | 5.26 | 98.38 |
7 | 597 | 1650.07 | 19.79 | 5.29 | 98.80 |
8 | 584 | 1426.23 | 13.56 | 5.35 | 99.05 |
9 | 576 | 1405.45 | 14.07 | 5.33 | 99.00 |
10 | 547 | 1749.27 | 14.31 | 5.36 | 99.18 |
11 | 534 | 1494.17 | 13.50 | 5.33 | 99.40 |
12 | 512 | 1552.55 | 17.24 | 5.28 | 98.89 |
筛板安装高度 H/m | 筛板鼓泡区 脱除效率/% | 喷淋吸收区 脱除效率/% | 总脱除效率/% |
---|---|---|---|
9.0 | 22.4 | 72.4 | 94.8 |
9.7 | 31.5 | 64.7 | 96.2 |
10.5 | 39.7 | 55.7 | 95.4 |
Table 5 Comparison of removal efficiency with different installation heights of sieve plate
筛板安装高度 H/m | 筛板鼓泡区 脱除效率/% | 喷淋吸收区 脱除效率/% | 总脱除效率/% |
---|---|---|---|
9.0 | 22.4 | 72.4 | 94.8 |
9.7 | 31.5 | 64.7 | 96.2 |
10.5 | 39.7 | 55.7 | 95.4 |
1 | 陈阵. 湿法脱硫塔内流场调控与强化传质过程研究[D]. 北京: 清华大学, 2018. |
Chen Z. Gas-liquid flow pattern controlling and mass transfer enhancement in wet flue gas desulfurization tower[D].Beijing: Tsinghua University, 2018. | |
2 | 钟毅. 基于WFGD系统的硫、氮、汞污染物协同脱除的理论与实验研究[D]. 杭州: 浙江大学, 2008. |
Zhong Y. Theoretical and experimental study of simultaneous removal of sulfur, nitrogen and mercury pollutant in WFGD system[D]. Hangzhou: Zhejiang University, 2008. | |
3 | 李存杰. 湿法烟气SO2高效脱除及SO3协同控制的实验研究[D]. 杭州: 浙江大学, 2017. |
Li C J. Experimental study on efficient removal of SO2 and synthesis control of SO3 based on wet flue gas desulfurization system[D]. Hangzhou: Zhejiang University, 2017. | |
4 | Kallinikos L E, Farsari E I, Spartinos D N, et al. Simulation of the operation of an industrial wet flue gas desulfurization system[J]. Fuel Processing Technology, 2010, 91(12): 1794-1802. |
5 | Zhu J, Ye S C, Bai J, et al. A concise algorithm for calculating absorption height in spray tower for wet limestone-gypsum flue gas desulfurization[J]. Fuel Processing Technology, 2015, 129: 15-23. |
6 | Brogren C, Karlsson H T. Modeling the absorption of SO2 in a spray scrubber using the penetration theory[J]. Chemical Engineering Science, 1997, 52(18): 3085-3099. |
7 | Uchida S, Koide K, Shindo M. Gas absorption with fast reaction into a slurry containing fine particles[J]. Chemical Engineering Science, 1975, 30(5/6): 644-646. |
8 | Dou B L, Pan W G, Jin Q, et al. Prediction of SO2 removal efficiency for wet flue gas desulfurization[J]. Energy Conversion and Management, 2009, 50(10): 2547-2553. |
9 | 霍旺. 石灰石-石膏湿法脱硫过程的吸收、氧化及结晶机理研究[D]. 杭州: 浙江大学, 2009. |
Huo W. Mechanism research on the absorption, oxidation and crystallization in the process of limestone-gypsum WFGD[D].Hangzhou: Zhejiang University, 2009. | |
10 | Marocco L, Inzoli F. Multiphase Euler–Lagrange CFD simulation applied to wet flue gas desulphurisation technology[J]. International Journal of Multiphase Flow, 2009, 35(2): 185-194. |
11 | Chen Z, Wang H M, Zhuo J K, et al. Experimental and numerical study on effects of deflectors on flow field distribution and desulfurization efficiency in spray towers[J]. Fuel Processing Technology, 2017, 162: 1-12. |
12 | Qu J Y, Qi N N, Zhang K, et al. Wet flue gas desulfurization performance of 330 MW coal-fired power unit based on computational fluid dynamics region identification of flow pattern and transfer process[J]. Chinese Journal of Chemical Engineering, 2021, 29: 13-26. |
13 | 杨国华, 吴迪, 苟远波, 等. 基于气-液传质氨法脱硫喷淋吸收CFD仿真模拟[J]. 中国环境科学, 2023, 43(4): 1519-1527. |
Yang G H, Wu D, Gou Y B, et al. CFD simulation of spray absorption of ammonia-based desulfurization based on gas-liquid mass transfer[J]. China Environmental Science, 2023, 43(4): 1519-1527. | |
14 | 韩文雅. 湿式脱硫喷淋塔内部流场的数值模拟[D]. 秦皇岛: 燕山大学, 2011. |
Han W Y. Numerical simulation of flow field in wet desulfurization spray tower[D].Qinhuangdao: Yanshan University, 2011. | |
15 | 杨贤平, 赵长遂, 陈晓平, 等. 液体分布环对喷淋塔中烟气流场影响的数值模拟[J]. 南京工程学院学报(自然科学版), 2007, 5(1): 35-40. |
Yang X P, Zhao C S, Chen X P, et al. Numerical simulation of influence of LDR on flow field in spray scrubber[J]. Journal of Nanjing Institute of Technology (Natural Science Edition), 2007, 5(1): 35-40. | |
16 | Warych J, Szymanowski M. Model of the wet limestone flue gas desulfurization process for cost optimization[J]. Industrial & Engineering Chemistry Research, 2001, 40(12): 2597-2605. |
17 | Gómez A, Fueyo N, Tomás A. Detailed modelling of a flue-gas desulfurisation plant[J]. Computers & Chemical Engineering, 2007, 31(11): 1419-1431. |
18 | Zhong Y, Gao X, Huo W, et al. A model for performance optimization of wet flue gas desulfurization systems of power plants[J]. Fuel Processing Technology, 2008, 89(11): 1025-1032. |
19 | Tseng C C, Li C J. Eulerian-Eulerian numerical simulation for a flue gas desulfurization tower with perforated sieve trays[J]. International Journal of Heat and Mass Transfer, 2018, 116: 329-345. |
20 | Tseng C C, Li C J. Numerical investigations for the two-phase flow structures and chemical reactions within a tray flue gas desulfurization tower by porous media model[J]. Applied Sciences, 2022, 12(5): 2276. |
21 | 王鹏辉, 庄黎伟, 张强, 等. 湿法脱硫喷淋塔内文丘里棒层构件流体力学[J]. 华东理工大学学报(自然科学版), 2016, 42(2): 171-179. |
Wang P H, Zhuang L W, Zhang Q, et al. Flow behavior through Venturi rod banks in WFGD spray tower[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2016, 42(2): 171-179. | |
22 | Cui L, Lu, J, Liu L, et al. Simulation study on novel groove separator in a dual‐loop wet flue gas desulfurization spray tower[J]. Asia‐Pacific Journal of Chemical Engineering, 2020, 15(4): e2442. |
23 | Li W J, Zhang Y X, Zhao Z Y, et al. Simulation investigation on marine exhaust gas SO2 absorption by seawater scrubbing[J]. Journal of the Air & Waste Management Association, 2022, 72(5): 383-402. |
24 | 林军, 王凡, 张凡, 等. 烟气分布器对半干法脱硫塔流场的影响[J]. 中国环境科学, 2006, 26(2): 129-132. |
Lin J, Wang F, Zhang F, et al. Influence of flue gas distributor on flow field of semi-dry desulphurization reactor[J]. China Environmental Science, 2006, 26(2): 129-132. | |
25 | Li X J, Dong M R, Li S D, et al. A numerical study of the ammonia desulfurization in the spray scattering tower[J]. Chemical Engineering and Processing - Process Intensification, 2020, 155: 108069. |
26 | 郭瑞堂. 石灰石活性和塔内流场对湿法烟气脱硫效率的影响研究[D]. 杭州: 浙江大学, 2008. |
Guo R T. Study on the effects of limestone reactivity and flow field on wet flue gas desulfurization efficiency[D].Hangzhou: Zhejiang University, 2008. | |
27 | 吴其荣, 关越, 周川, 等. 筛板脱硫塔气液流动及运行参数的影响分析[J]. 工业安全与环保, 2019, 45(3): 61-65. |
Wu Q R, Guan Y, Zhou C, et al. Analysis of multiphase flow and different parameters impact on a sieve-plate desulphurization tower[J]. Industrial Safety and Environmental Protection, 2019, 45(3): 61-65. | |
28 | Wu Q R, Wu M L, Du Y G, et al. Enhanced efficiency of the sieve tray in a desulfurization spray scrubber[J]. Frontiers in Energy Research, 2022, 10: 918233. |
29 | Zhao Z Y, Zhang Y X, Gao W C, et al. Simulation of SO2 absorption and performance enhancement of wet flue gas desulfurization system[J]. Process Safety and Environmental Protection, 2021, 150: 453-463. |
30 | 曲江源, 齐娜娜, 关彦军, 等. 湿法烟气脱硫塔内传递与化学反应过程CFD模拟[J]. 化工学报, 2019, 70(6): 2117-2128. |
Qu J Y, Qi N N, Guan Y J, et al. CFD simulation of transfer and chemical reaction process in wet flue gas desulfurization tower[J]. CIESC Journal, 2019, 70(6): 2117-2128. | |
31 | Qu J Y, Qi N N, Li Z, et al. Mass transfer process intensification for SO2 absorption in a commercial-scale wet flue gas desulfurization scrubber[J]. Chemical Engineering and Processing- Process Intensification, 2021, 166: 108478. |
32 | Guo H, Zhou S, Shreka M, et al. A numerical investigation on the optimization of uneven flow in a marine de-SO x scrubber[J]. Processes, 2020, 8(7): 862. |
33 | Neveux T, Le Moullec Y. Wet industrial flue gas desulfurization unit: model development and validation on industrial data[J]. Industrial & Engineering Chemistry Research, 2011, 50(12): 7579-7592. |
34 | Marocco L. Modeling of the fluid dynamics and SO2 absorption in a gas-liquid reactor[J]. Chemical Engineering Journal, 2010, 162(1): 217-226. |
35 | Morsi S A, Alexander A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55: 193-208. |
36 | Xu Z P, Afacan A, Chuang K T. Efficiency of dual flow trays in distillation[J]. The Canadian Journal of Chemical Engineering, 1994, 72(4): 607-613. |
[1] | Xueyi MA, Keqin LIU, Jijiang HU, Zhen YAO. CFD studies on the mixing and reaction in a solution polymerization reactor for POE production [J]. CIESC Journal, 2024, 75(1): 322-337. |
[2] | Yang YU, Yiqing LUO, Ronghui WEI, Wenhui ZHANG, Xigang YUAN. A resilient supply chain design method considering node disruption risk [J]. CIESC Journal, 2024, 75(1): 338-353. |
[3] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[4] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[5] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[6] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[7] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[8] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[9] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[10] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[11] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[12] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[13] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[14] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
[15] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||