CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5162-5175.DOI: 10.11949/0438-1157.20250182
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yanzi WANG1(
), Jia’nan DAI1,2, Jing MA1(
), Tengyue ZHANG1, Zili LIANG1
Received:2025-02-26
Revised:2025-04-23
Online:2025-11-25
Published:2025-10-25
Contact:
Jing MA
王燕子1(
), 代佳楠1,2, 马晶1(
), 张腾月1, 梁子莉1
通讯作者:
马晶
作者简介:王燕子(1998—),女,硕士研究生,1139338723@qq.com
基金资助:CLC Number:
Yanzi WANG, Jia’nan DAI, Jing MA, Tengyue ZHANG, Zili LIANG. Oxygen vacancy characteristics and photocatalytic performance of rare earth elements (RE: Nd, Sm, Eu, Er, Tm) doped B-TiO₂[J]. CIESC Journal, 2025, 76(10): 5162-5175.
王燕子, 代佳楠, 马晶, 张腾月, 梁子莉. 稀土元素(RE: Nd、Sm、Eu、Er、Tm)修饰B-TiO2氧空位特性及其催化性能研究[J]. 化工学报, 2025, 76(10): 5162-5175.
Add to citation manager EndNote|Ris|BibTeX
Fig.11 (a) Valence band spectrum of B-TiO2 and Er-B-TiO2; (b) Free radical capture experiment for degradation of TCH; (c) EPR spectra of RE-B-TiO2; (d) OVs spectra of B-TiO2 and Er-B-TiO2
Fig.13 Toxicity evaluation of TCH and its degradation intermediates for Er-B-TiO2: (a) Daphnia magna LC50 (48 h), (b) mutagenicity, (c) development toxicity, and (d) bioaccumulation factor
| [1] | Gao Y W, Chen Z H, Zhu Y, et al. New insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: important role of electron-deficient carbon atoms[J]. Environmental Science & Technology, 2020, 54(2): 1232-1241. |
| [2] | Zhan X Y, Zeng Y X, Zhang H, et al. The coral-like carbon nitride array: rational design for efficient photodegradation of tetracycline under visible light[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109201. |
| [3] | Mustafa F S, Aziz K H H. Heterogeneous catalytic activation of persulfate for the removal of rhodamine B and diclofenac pollutants from water using iron-impregnated biochar derived from the waste of black seed pomace[J]. Process Safety and Environmental Protection, 2023, 170: 436-448. |
| [4] | Du S W, Zou H, Bao Y F, et al. Homogeneous nitrogen-doped (111)-type layered Sr5Nb4O15– x N x as a visible-light-responsive photocatalyst for water oxidation[J]. Nano Research, 2022, 15(12): 9976-9984. |
| [5] | Wang L J, Zhang Z, Guan R Q, et al. Synergistic CO2 reduction and tetracycline degradation by CuInZnS-Ti3C2T x in one photoredox cycle[J]. Nano Research, 2022, 15(9): 8010-8018. |
| [6] | 梁梦欣,郭艳,王世栋,等.氮化碳负载钯催化剂的制备及对SBS选择性催化加氢性能的研究[J].化工学报,2023,74(2):766-775. |
| Liang M X, Guo Y, Wang S D, et al. Study on preparation of Pd catalyst supported on carbon nitride for the selective hydrogenation of SBS[J]. CIESC Journal, 2023, 74(2): 766-775. | |
| [7] | 谈朋, 李雪梅, 刘晓勤,等. 基于柔性MOFs的磁响应复合材料及其丙烯吸附性能研究[J]. 化工学报, 2025, 76(5): 2230-2240. |
| Tan P, Li X M, Liu X Q, et al. Study on magnetically responsive composite materials based on flexible MOFs and their propylene adsorption performance[J]. CIESC Journal, 2025, 76(5): 2230-2240. | |
| [8] | Hu D K, Qiu D P, Zeng L W, et al. Solar-driven nitrogen fixation catalyzed by stable radical-containing MOFs: improved efficiency induced by a structural transformation[J]. Angewandte Chemie International Edition, 2020, 59(46): 20666-20671. |
| [9] | Liang P L, Yuan L Y, Du K, et al. Photocatalytic reduction of uranium(Ⅵ) under visible light with 2D/1D Ti3C2/CdS[J]. Chemical Engineering Journal, 2021, 420: 129831. |
| [10] | Zhang J, Gao M T, Wang R Y, et al. Switching of CO2 hydrogenation selectivity via chlorine poisoning over Ru/TiO2 catalyst[J]. Nano Research, 2023, 16(4): 4786-4792. |
| [11] | 吴云, 龚海峰. 疏水改性羰基铁负载TiO2光催化降解石油烃污染物[J]. 化工学报, 2024: 75(12): 4555-4562. |
| Wu Y, Gong H F. Carbonyl iron loaded TiO2 photocatalyst by hydrophobic modification for degradation of petroleum hydrocarbon pollutants in water[J]. CIESC Journal, 2024, 75(12): 4555-4562. | |
| [12] | Yavuz C, Ela S E. Fabrication of g-C3N4-reinforced CdS nanosphere-decorated TiO2 nanotablet composite material for photocatalytic hydrogen production and dye-sensitized solar cell application[J]. Journal of Alloys and Compounds, 2023, 936: 168209. |
| [13] | Mazierski P, Mikolajczyk A, Bajorowicz B, et al. The role of lanthanides in TiO2-based photocatalysis: a review[J]. Applied Catalysis B: Environmental, 2018, 233: 301-317. |
| [14] | Ru Y X, Chen Y J, Yu X Y, et al. Enhanced charge separation of Cu-BTC@CuSe@TiO2 hollow octahedrons for efficient CO2 photoreduction with superior CO selectivity[J]. Separation and Purification Technology, 2024, 349: 127784. |
| [15] | Kumaravel V, Mathew S, Bartlett J, et al. Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances[J]. Applied Catalysis B: Environmental, 2019, 244: 1021-1064. |
| [16] | Bilgin Simsek E. Solvothermal synthesized boron doped TiO2 catalysts: photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation[J]. Applied Catalysis B: Environmental, 2017, 200: 309-322. |
| [17] | Feng N, Zheng A, Wang Q, et al. Boron environments in B-doped and (B, N)-codoped TiO2 photocatalysts: a combined solid-state NMR and theoretical calculation study[J]. The Journal of Physical Chemistry C, 2011, 115(6): 2709-2719. |
| [18] | Christoforidis D K C, Montini D T, Fittipaldi D M, et al. Photocatalytic hydrogen production by boron modified TiO2/carbon nitride heterojunctions[J]. ChemCatChem, 2019, 11(24): 6408-6416. |
| [19] | Wu D P, Guo J, Wang H J, et al. Green synthesis of boron and nitrogen co-doped TiO2 with rich BN motifs as Lewis acid-base couples for the effective artificial CO2 photoreduction under simulated sunlight[J]. Journal of Colloid and Interface Science, 2021, 585: 95-107. |
| [20] | Liu C W, Hao D, Ye J, et al. Knowledge-driven design and lab-based evaluation of B-doped TiO2 photocatalysts for ammonia synthesis[J]. Advanced Energy Materials, 2023, 13(8): 2204126. |
| [21] | Mo Z, Miao Z H, Yan P C, et al. Electronic and energy level structural engineering of graphitic carbon nitride nanotubes with B and S co-doping for photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science, 2023, 645: 525-532. |
| [22] | Rong W, Ding M, Wang Y, et al. Porous biochar with a tubular structure for photothermal CO2 cycloaddition: one-step doping versus two-step doping[J]. Separation and Purification Technology, 2025, 353: 128427. |
| [23] | Zheng B Z, Fan J Y, Chen B, et al. Rare-earth doping in nanostructured inorganic materials[J]. Chemical Reviews, 2022, 122(6): 5519-5603. |
| [24] | Tiwari D, Lee S M, Kim D J, et al. Photocatalytic degradation of amoxicillin and tetracycline by template synthesized nano-structured Ce3+@TiO2 thin film catalyst[J]. Environmental Research, 2022, 210: 112914. |
| [25] | Prakash J, Samriti, Kumar A, et al. Novel rare earth metal–doped one-dimensional TiO2 nanostructures: fundamentals and multifunctional applications[J]. Materials Today Sustainability, 2021, 13: 100066. |
| [26] | Wu Q, Zhang Q, Li W P, et al. Tailoring of visible light driven photocatalytic activities of Bi2MoO6 flower-like microspheres via synergistic effect of doping and surface Plasmon resonance[J]. Chemical Engineering Journal, 2023, 475: 146192. |
| [27] | Chen L Y, Zhang P K, Kuo D H, et al. Synergism of heterovalent valence state and oxygen vacancy defect engineering in Co/S co-doped TiO2 for nitrogen photoreduction to ammonia[J]. Journal of Materials Chemistry A, 2024, 12(16): 9871-9885. |
| [28] | Chen Y, Liu K R. Fabrication of Ce/N co-doped TiO2/diatomite granule catalyst and its improved visible-light-driven photoactivity[J]. Journal of Hazardous Materials, 2017, 324: 139-150. |
| [29] | Ma K W, Zhang M Y, Sun W J, et al. Revealing different depth boron substitution on interfacial charge transfer in TiO2 for enhanced visible-light H2 production[J]. Applied Catalysis B: Environmental, 2022, 315: 121570. |
| [30] | Das D, Shyam S. Reduced work function in anatase <101> TiO2 films self-doped by O-vacancy-dependent Ti3+ bonds controlling the photocatalytic dye degradation performance[J]. Langmuir, 2024, 40(20): 10502-10517. |
| [31] | Wang R, Xu M, Xie J W, et al. A spherical TiO2-Bi2WO6 composite photocatalyst for visible-light photocatalytic degradation of ethylene[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602: 125048. |
| [32] | Acharya L, Pattnaik S P, Behera A, et al. Exfoliated boron nitride (e-BN) tailored exfoliated graphitic carbon nitride (e-CN): an improved visible light mediated photocatalytic approach towards TCH degradation and H2 evolution[J]. Inorganic Chemistry, 2021, 60(7): 5021-5033. |
| [33] | Mikolajczyk A, Wyrzykowska E, Mazierski P, et al. Visible-light photocatalytic activity of rare-earth-metal-doped TiO2: experimental analysis and machine learning for virtual design[J]. Applied Catalysis B: Environment and Energy, 2024, 346: 123744. |
| [34] | 张佳颖, 王聪, 王雅君. CNT-Co/Bi2O3催化剂光催化协同过硫酸盐活化高效降解四环素[J]. 化工学报, 2024, 75(9): 3163-3175. |
| Zhang J Y, Wang C, Wang Y J. CNT-Co/Bi2O3 catalyst photocatalytic synergistic activation of persulfate for efficient degradation of tetracycline[J]. CIESC Journal, 2024, 75(9): 3163-3175. | |
| [35] | Sengottiyan S, Mikolajczyk A, Jagiełło K, et al. Core, coating, or corona? The importance of considering protein coronas in nano-QSPR modeling of zeta potential[J]. ACS Nano, 2023, 17(3): 1989-1997. |
| [36] | Ren X H, Yao H, Tang R, et al. Modification of TiO2 by Er3+ and rGO enhancing visible photocatalytic degradation of arsanilic acid[J]. Environmental Science and Pollution Research International, 2023, 30(12): 35023-35033. |
| [37] | Parnicka P, Lisowski W, Klimczuk T, et al. Visible-light-driven lanthanide-organic-frameworks modified TiO2 photocatalysts utilizing up-conversion effect[J]. Applied Catalysis B: Environmental, 2021, 291: 120056. |
| [38] | Zhang S Q, Zhang J, Sun J, et al. Capillary microphotoreactor packed with TiO2-coated glass beads: an efficient tool for photocatalytic reaction[J]. Chemical Engineering and Processing - Process Intensification, 2020, 147: 107746. |
| [39] | Parrino F, Bellardita M, García-López E I, et al. Heterogeneous photocatalysis for selective formation of high-value-added molecules: some chemical and engineering aspects[J]. ACS Catalysis, 2018, 8(12): 11191-11225. |
| [40] | 皮若冰, 周云龙. 直接Z型异质结体系光催化还原二氧化碳研究进展[J]. 化工学报, 2024, 75(10): 3379-3400. |
| Pi R B, Zhou Y L. Research progress on photocatalytic reduction of carbon dioxide in direct Z-scheme heterojunctions system[J]. CIESC Journal, 2024, 75(10): 3379-3400. | |
| [41] | Lin Z T, Ye S J, Xu Y B, et al. Construction of a novel efficient Z-scheme BiVO4/EAQ heterojunction for the photocatalytic inactivation of antibiotic-resistant pathogens: Performance and mechanism[J]. Chemical Engineering Journal, 2023, 453: 139747. |
| [42] | Reszczyńska J, Grzyb T, Wei Z S, et al. Photocatalytic activity and luminescence properties of RE3+-TiO2 nanocrystals prepared by sol-gel and hydrothermal methods[J]. Applied Catalysis B: Environmental, 2016, 181: 825-837. |
| [43] | Tian K G, Jin L J, Mahmood A, et al. Lattice distortion promotes carrier separation to improve the photoelectrochemical water splitting performance of bismuth vanadate photoanode[J]. Advanced Functional Materials, 2024, 34(51): 2410548. |
| [44] | Fang W J, Yan J W, Wei Z D, et al. Account of doping photocatalyst for water splitting[J]. Chinese Journal of Catalysis, 2024, 60: 1-24. |
| [45] | Zhao D X, Cai C. Layered Ti3C2 MXene modified two-dimensional Bi2WO6 composites with enhanced visible light photocatalytic performance[J]. Materials Chemistry Frontiers, 2019, 3(11): 2521-2528. |
| [46] | Liu F, Feng N D, Wang Q, et al. Transfer channel of photoinduced holes on a TiO2 surface As revealed by solid-state nuclear magnetic resonance and electron spin resonance spectroscopy[J]. Journal of the American Chemical Society, 2017, 139(29): 10020-10028. |
| [47] | Zhang L, Tan L, Yuan Z X, et al. Engineering of Bi2O2CO3/Ti3C2T x heterojunctions co-embedded with surface and interface oxygen vacancies for boosted photocatalytic degradation of levofloxacin[J]. Chemical Engineering Journal, 2023, 452: 139327. |
| [48] | Chen L, Ji H D, Qi J J, et al. Degradation of acetaminophen by activated peroxymonosulfate using Co(OH)2 hollow microsphere supported titanate nanotubes: insights into sulfate radical production pathway through CoOH+ activation[J]. Chemical Engineering Journal, 2021, 406: 126877. |
| [49] | Mao S, Zhao P, Wu Y, et al. Promoting charge migration of Co(OH)2/ g-C3N4 by hydroxylation for improved PMS activation: catalyst design, DFT calculation and mechanism analysis[J]. Chemical Engineering Journal, 2023, 451: 138503. |
| [50] | Li H, Ji H D, Liu J J, et al. Interfacial modulation of ZnIn2S4 with high active Zr-S4 sites for boosting photocatalytic activation of oxygen and degradation of emerging contaminant[J]. Applied Catalysis B: Environmental, 2023, 328: 122481. |
| [1] | Wei ZHAO, Wenle XING, Zhaoxu HAN, Xingzhong YUAN, Longbo JIANG. Progress of g-C3N4-based metal-free heterojunction photocatalytic degradation of organic pollutants in water [J]. CIESC Journal, 2025, 76(9): 4752-4769. |
| [2] | Huihui QIAN, Wenjie WANG, Wenyao CHEN, Xinggui ZHOU, Jing ZHANG, Xuezhi DUAN. Synergistic metal-zeolite catalysis for conversion of polypropylene into aromatics [J]. CIESC Journal, 2025, 76(9): 4838-4849. |
| [3] | Lili TONG, Ying CHEN, Minhua AI, Yumei SHU, Xiangwen ZHANG, Jijun ZOU, Lun PAN. ZnO/WO3 heterojunction modulated [2+2] photocycloaddition of cycloolefins for high-energy-density fuels production [J]. CIESC Journal, 2025, 76(9): 4882-4892. |
| [4] | Xinyi CHAO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Controlled preparation and performance regulation of catalysts for one-step synthesis of methyl propionate from methanol and methyl acetate [J]. CIESC Journal, 2025, 76(8): 4030-4041. |
| [5] | Xiayu FAN, Jianchen SUN, Keying LI, Xinya YAO, Hui SHANG. Machine learning drives system optimization of liquid organic hydrogen storage technology [J]. CIESC Journal, 2025, 76(8): 3805-3821. |
| [6] | Ning YANG, Haonan LI, Xiao LIN, Stella GEORGIADOU, Wen-Feng LIN. Application of plastic-derived carbon@CoMoO4 composites as an efficient electrocatalyst for hydrogen evolution reaction in water electrolysis [J]. CIESC Journal, 2025, 76(8): 4081-4094. |
| [7] | Xuerui LU, Guoyan ZHOU, Qi FANG, Mengzheng YU, Xiucheng ZHANG, Shandong TU. Numerical study on the carbon deposition effect in external reformer of solid oxide fuel cells [J]. CIESC Journal, 2025, 76(7): 3295-3304. |
| [8] | Shiying ZHAO, Zhishuai ZUO, Mengying HE, Hualiang AN, Xinqiang ZHAO, Yanji WANG. Preparation of Co-Pt/HAP catalyst and its catalytic performance for 1,2-propanediol amination [J]. CIESC Journal, 2025, 76(7): 3305-3315. |
| [9] | Bolong LI, Yuxi JIANG, Aotian REN, Wenqi QIN, Jie FU, Xiuyang LYU. Study on continuous alcoholysis of fructose to methyl lactate over TS-1 and In-TS-1 [J]. CIESC Journal, 2025, 76(6): 2678-2686. |
| [10] | Jun HE, Yong LI, Nan ZHAO, Xiaojun HE. Study on the properties of carbon with Se doping cobalt sulfide in lithium-sulfur batteries [J]. CIESC Journal, 2025, 76(6): 2995-3008. |
| [11] | Fenhong SONG, Wenguang WANG, Liang GUO, Jing FAN. Modulation of TiO2 by C-element modified g-C3N4 and photocatalytic hydrogen production performance of composites [J]. CIESC Journal, 2025, 76(6): 2983-2994. |
| [12] | Yujie MAO, Xiaofei LU, Xian SUO, Lifeng YANG, Xili CUI, Huabin XING. Advances in research on catalysts for deep removal of trace oxygen in industrial gases [J]. CIESC Journal, 2025, 76(5): 1997-2010. |
| [13] | Lu LIU, Kai WAN, Wenyue WANG, Tai WANG, Jiancheng TANG, Shaoheng WANG. Study on orthohydrogen and parahydrogen conversion coupled flow and heat transfer based on helium expansion refrigeration [J]. CIESC Journal, 2025, 76(4): 1513-1522. |
| [14] | Jun WAN, Jiarui SONG, Chunhuang FAN, Lele WEI, Yina NIE, Lin LIU. Highly efficient hole transfer for promoting photocatalytic hydrogen production from alkaline methanol aqueous solution [J]. CIESC Journal, 2025, 76(3): 1064-1075. |
| [15] | Yue GAO, Ding LI, Yumiao GAO. Study on catalytic oxidation remediation technology of organic polluted site soil [J]. CIESC Journal, 2025, 76(3): 1297-1304. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||