CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2451-2468.DOI: 10.11949/0438-1157.20241283
• Reviews and monographs • Previous Articles Next Articles
Jian PENG1,2(
), Lukai SHEN2, Likun WANG1,2(
), Lihong XIN3, Yong LIU2, Gaoling ZHAO2, Sainan MA1,2, Gaorong HAN2
Received:2024-11-12
Revised:2024-12-16
Online:2025-07-09
Published:2025-06-25
Contact:
Likun WANG
彭健1,2(
), 沈鲁恺2, 王立坤1,2(
), 忻利宏3, 刘涌2, 赵高凌2, 马赛男1,2, 韩高荣2
通讯作者:
王立坤
作者简介:彭健(2000—),男,硕士研究生,22360439@zju.edu.cn
基金资助:CLC Number:
Jian PENG, Lukai SHEN, Likun WANG, Lihong XIN, Yong LIU, Gaoling ZHAO, Sainan MA, Gaorong HAN. Preparation of tungstate nanomaterials and research progress in electrochromic field[J]. CIESC Journal, 2025, 76(6): 2451-2468.
彭健, 沈鲁恺, 王立坤, 忻利宏, 刘涌, 赵高凌, 马赛男, 韩高荣. 钨酸盐纳米材料的制备及其在电致变色领域的研究进展[J]. 化工学报, 2025, 76(6): 2451-2468.
Add to citation manager EndNote|Ris|BibTeX
| 纳米结构 | 制备方法 | 光调制幅度(波长/nm) | 响应时间 Tc、Tb/s | 着色效率/ (cm2·C-1) | 循环次数/次 | 电解液及浓度/ (mol·L-1) | 对电极 | 文献 |
|---|---|---|---|---|---|---|---|---|
| 纳米片 | 液相剥离 | 62.57%(700) | 10.74/6.97 @700 nm | — | 1000(6%调制衰减) | LiClO4-PC(1) | Pt | [ |
| 纳米棒 | 气相沉积 | 61%(680) | 2.05/0.74 @680 nm | 174 @680 nm | 1000(5%调制衰减) | LiClO4-PC(1) | NiO | [ |
| 89%(1000) | 0.85/1.0 @1000 nm | 386 @1000 nm | ||||||
| 纳米线 | 水热法 | 66%(650) | 1.2/2 @650 nm | 115.2 @650 nm | 10000(1.6%调制衰减) | KOH水溶液(3) | Pt | [ |
| 纳米花 | 溶剂热法 | 41.43%(700) | 6.67/1.54 @700 nm | — | 4000(2.25%调制衰减) | LiClO4-PC(1) | 碳棒 | [ |
纳米孔 网络 | 阳极氧化 | 75%(750) | 2.5/16.6 @750 nm | 141.5 @750 nm | 2000 | H2SO4水溶液(0.1) | Pt | [ |
| 纳米颗粒 | 电沉积法 | 88.51%(555) | 5.1/3.7 @632.8 nm | 137 @555 nm | — | LiClO4-PC(0.5) | ITO | [ |
Table 1 Electrochromic properties of WO3 thin films with different nanostructures
| 纳米结构 | 制备方法 | 光调制幅度(波长/nm) | 响应时间 Tc、Tb/s | 着色效率/ (cm2·C-1) | 循环次数/次 | 电解液及浓度/ (mol·L-1) | 对电极 | 文献 |
|---|---|---|---|---|---|---|---|---|
| 纳米片 | 液相剥离 | 62.57%(700) | 10.74/6.97 @700 nm | — | 1000(6%调制衰减) | LiClO4-PC(1) | Pt | [ |
| 纳米棒 | 气相沉积 | 61%(680) | 2.05/0.74 @680 nm | 174 @680 nm | 1000(5%调制衰减) | LiClO4-PC(1) | NiO | [ |
| 89%(1000) | 0.85/1.0 @1000 nm | 386 @1000 nm | ||||||
| 纳米线 | 水热法 | 66%(650) | 1.2/2 @650 nm | 115.2 @650 nm | 10000(1.6%调制衰减) | KOH水溶液(3) | Pt | [ |
| 纳米花 | 溶剂热法 | 41.43%(700) | 6.67/1.54 @700 nm | — | 4000(2.25%调制衰减) | LiClO4-PC(1) | 碳棒 | [ |
纳米孔 网络 | 阳极氧化 | 75%(750) | 2.5/16.6 @750 nm | 141.5 @750 nm | 2000 | H2SO4水溶液(0.1) | Pt | [ |
| 纳米颗粒 | 电沉积法 | 88.51%(555) | 5.1/3.7 @632.8 nm | 137 @555 nm | — | LiClO4-PC(0.5) | ITO | [ |
Fig.4 (a) The proportion of various inorganic material papers in the field of electrochromism; (b) The trend of the number of published papers on tungsten based compounds in the field of electrochromism from 2014 to 2024
| 制备方法 | 制备难度 | 优点 | 缺点 |
|---|---|---|---|
| 高温固相法[ | 较低 | 适用于大规模生产,操作简单; 产物结晶度高,稳定性好 | 需要高温条件,能耗大; 颗粒易团聚,形貌可控性差 |
| 沉淀法[ | 较低 | 工艺简单,设备要求低; 适合大规模制备,成本低 | 颗粒尺寸不均匀,形貌难以控制; 处理工艺复杂,产品纯度低 |
| 水热法[ | 中等 | 简单易行,成本较低; 反应条件温和(低温高压) | 颗粒尺寸较大,难以精确控制; 产率受限,安全性要求高 |
| 溶剂热法[ | 中等 | 颗粒尺寸较小,形貌可控; 溶剂种类多样,反应环境易调控 | 反应条件复杂(高温高压); 有机溶剂昂贵且对环境可能有污染 |
| 溶胶-凝胶法[ | 较低 | 可在低温进行,适合大规模生产; 多组分掺杂,均匀性较好 | 工艺较复杂,难以控制凝胶的均匀性; 产物颗粒易团聚 |
| 电化学沉积法[ | 较高 | 颗粒形貌可控; 可实现薄膜制备 | 设备复杂,对电极材料要求高; 需严格控制电化学参数,技术难度高 |
| 喷雾热解法[ | 较高 | 参数可控,生产效率高; 产物纯度高,粒径分布均匀 | 前体溶液分散性、稳定性要求高; 设备成本高,能耗较高 |
Table 2 Comparison of advantages and disadvantages of common preparation methods for tungstate nanomaterials
| 制备方法 | 制备难度 | 优点 | 缺点 |
|---|---|---|---|
| 高温固相法[ | 较低 | 适用于大规模生产,操作简单; 产物结晶度高,稳定性好 | 需要高温条件,能耗大; 颗粒易团聚,形貌可控性差 |
| 沉淀法[ | 较低 | 工艺简单,设备要求低; 适合大规模制备,成本低 | 颗粒尺寸不均匀,形貌难以控制; 处理工艺复杂,产品纯度低 |
| 水热法[ | 中等 | 简单易行,成本较低; 反应条件温和(低温高压) | 颗粒尺寸较大,难以精确控制; 产率受限,安全性要求高 |
| 溶剂热法[ | 中等 | 颗粒尺寸较小,形貌可控; 溶剂种类多样,反应环境易调控 | 反应条件复杂(高温高压); 有机溶剂昂贵且对环境可能有污染 |
| 溶胶-凝胶法[ | 较低 | 可在低温进行,适合大规模生产; 多组分掺杂,均匀性较好 | 工艺较复杂,难以控制凝胶的均匀性; 产物颗粒易团聚 |
| 电化学沉积法[ | 较高 | 颗粒形貌可控; 可实现薄膜制备 | 设备复杂,对电极材料要求高; 需严格控制电化学参数,技术难度高 |
| 喷雾热解法[ | 较高 | 参数可控,生产效率高; 产物纯度高,粒径分布均匀 | 前体溶液分散性、稳定性要求高; 设备成本高,能耗较高 |
Fig.6 (a) Transmittance curves of Li doped NWO and WO3 films at 300—1500 nm; (b) Transmittance curves of the device at 300—1000 nm under different biases; (c) Transmittance curves of the device at 300—1500 nm after being left to stand for different periods of time; (d) Time variation curve of device charge density with the number of cycles; (e) The variation curve of the device CV curve with the number of cycles; (f) The variation curve of device transmittance with the number of cycles at 300—1000 nm[81]
Fig.7 (a) Crystal structure of hexagonal sodium tungsten bronze; (b) Transmission electron microscopy image of sodium tungsten bronze; (c) Transmission spectra of sodium tungsten bronze in bleached and colored states (digital photo attached); (d) XRD patterns of sodium tungsten bronze in bleached and colored states; (e) Fourier transform infrared spectra of sodium tungsten bronze in bleached and colored states[19]
Fig.8 (a) Schematic diagram of H2W2O7, WO3·H2O, and WO3 structures; (b) CV curves at scanning speeds of 50, 100, 200, 500, and 1000 mV·s-1; (c) Scanning electron microscopy image of H2W2O7; (d) In situ Raman spectroscopy curve of H2W2O7; (e) Digital photos collected during in situ Raman spectroscopy of H2W2O7[89]
Fig.9 (a) Crystal structure of Cs3W11O35; (b) Transmittance and reflectance curves of Cs3W11O35 with different layers; (c) Transmission electron microscopy image of Cs3W11O35; (d) Visible and infrared images for thermal shielding test[94]
Fig.10 (a) Schematic diagram of WO3 structure; (b) Schematic diagram of Nb18W16O93 structure; (c) Schematic diagram of Nb2O5 structure; (d) CV curve at a scanning speed of 20 mV·s-1; (e) In situ transmittance voltage curve at 633 nm; (f) Transmittance curve of 300—1600 nm (corresponding photo in the illustration); (g) In situ transmittance curve with a square wave potential applied at 633 nm; (h) Transmittance curves at different voltages; (i) Coloring efficiency at 633 nm[39]
Fig.11 (a) Transmittance curves of Ce4W9O33 electrode under different applied potentials; (b) Electrochromic photo of Ce4W9O33 electrode; (c) Solar irradiation spectra of Ce4W9O33 electrode under different applied potentials; (d) In situ transmittance curve with a square wave potential applied at 633 nm; (e) In situ transmittance curve with a square wave potential applied at 1200 nm; (f) The cycling performance of Ce4W9O33 electrode[40]
| 纳米材料 | 制备方法 | 光调制幅度(波长/nm) | 响应时间 Tc、Tb/s | 着色效率/(cm2·C-1) | 循环次数/次 | 电解液及浓度/ (mol·L-1) | 对电极 | 文献 |
|---|---|---|---|---|---|---|---|---|
| WO3·0.1H2O | 光沉积法 | 55.1%(633) | 11.4/23.9 @633 nm | 47.7 @633 nm | — | ZnSO4 水溶液(1) | Zn | [ |
| WO3·0.5H2O | 69.0%(633) | 7.0/3.4 @633 nm | 61.9 @633 nm | 13000(3%调制衰减) | ||||
| WO3·H2O | 溶胶-凝胶法 | 82%(900) | 12.0/6.0 @900 nm | 97.8 @650 nm | 1000(13%调制衰减) | LiClO4/SPE | FTO | [ |
| WO3·H2O | 电沉积法 | 59%(1200) | <15 | 96.2 @1200 nm | — | LiClO4-PC(1) | Li | [ |
| TBAClO4-PC(0.1) | Pt | |||||||
| Ni-W@Li | 磁控溅射法 | 75%(550) | — | 115.2 @650 nm | 1000 | LiClO4-PC(0.5) | WO3 | [ |
| Bi2Na0.5La0.5TiWO9 | 高温固相法 | 30.3%(555) | — | 37.1 @555 nm | — | H2SO4水溶液(0.2) | Pt | [ |
| Nb18W16O93 | 溶胶-凝胶法 | 53.1%(633) | 4.7/4.0 @633 nm | 46.57 @633 nm | 8000(21.9%调制衰减) | LiClO4-PC(0.5) | FTO | [ |
| Nb18W16O93 | 水热法 | 49.4%(633) | 12.0/2.6 @633 nm | 33.7 @633 nm | 600(35%调制衰减) | LiClO4-PC(0.5) | Pt | [ |
| 90.5%(1600) | 6.5/6.1 @1600 nm | 66.1 @1600 nm | ||||||
| Nb18W16O93 | 溶胶-水热法 | 93%(633) | 10.1/12.7 @633 nm | 105.6 @633 nm | 1000(16.5%调制衰减) | LiClO4/PMMA(0.3) | NiO | [ |
| 89%(1200) | 7.4/5.4 @1200 nm | 6000(33.6%调制衰减) | ||||||
| Ce4W9O33 | 水热法 | 74.7%(633) | 10.5/4.5 @633 nm | 98.3 @1200nm | 500(11.1%调制衰减) | ZnSO4 水溶液(0.5) | NiO | [ |
| 85.8%(1200) | 6.5/4.1 @1200 nm |
Table 3 The electrochromic properties of common tungstate nanofilms
| 纳米材料 | 制备方法 | 光调制幅度(波长/nm) | 响应时间 Tc、Tb/s | 着色效率/(cm2·C-1) | 循环次数/次 | 电解液及浓度/ (mol·L-1) | 对电极 | 文献 |
|---|---|---|---|---|---|---|---|---|
| WO3·0.1H2O | 光沉积法 | 55.1%(633) | 11.4/23.9 @633 nm | 47.7 @633 nm | — | ZnSO4 水溶液(1) | Zn | [ |
| WO3·0.5H2O | 69.0%(633) | 7.0/3.4 @633 nm | 61.9 @633 nm | 13000(3%调制衰减) | ||||
| WO3·H2O | 溶胶-凝胶法 | 82%(900) | 12.0/6.0 @900 nm | 97.8 @650 nm | 1000(13%调制衰减) | LiClO4/SPE | FTO | [ |
| WO3·H2O | 电沉积法 | 59%(1200) | <15 | 96.2 @1200 nm | — | LiClO4-PC(1) | Li | [ |
| TBAClO4-PC(0.1) | Pt | |||||||
| Ni-W@Li | 磁控溅射法 | 75%(550) | — | 115.2 @650 nm | 1000 | LiClO4-PC(0.5) | WO3 | [ |
| Bi2Na0.5La0.5TiWO9 | 高温固相法 | 30.3%(555) | — | 37.1 @555 nm | — | H2SO4水溶液(0.2) | Pt | [ |
| Nb18W16O93 | 溶胶-凝胶法 | 53.1%(633) | 4.7/4.0 @633 nm | 46.57 @633 nm | 8000(21.9%调制衰减) | LiClO4-PC(0.5) | FTO | [ |
| Nb18W16O93 | 水热法 | 49.4%(633) | 12.0/2.6 @633 nm | 33.7 @633 nm | 600(35%调制衰减) | LiClO4-PC(0.5) | Pt | [ |
| 90.5%(1600) | 6.5/6.1 @1600 nm | 66.1 @1600 nm | ||||||
| Nb18W16O93 | 溶胶-水热法 | 93%(633) | 10.1/12.7 @633 nm | 105.6 @633 nm | 1000(16.5%调制衰减) | LiClO4/PMMA(0.3) | NiO | [ |
| 89%(1200) | 7.4/5.4 @1200 nm | 6000(33.6%调制衰减) | ||||||
| Ce4W9O33 | 水热法 | 74.7%(633) | 10.5/4.5 @633 nm | 98.3 @1200nm | 500(11.1%调制衰减) | ZnSO4 水溶液(0.5) | NiO | [ |
| 85.8%(1200) | 6.5/4.1 @1200 nm |
| [1] | International Energy Agency. World Energy Outlook 2023[R]. Paris: OECD Publishing, 2023. |
| [2] | 中国建筑节能协会, 重庆大学城乡建设与发展研究院. 中国建筑能耗与碳排放研究报告(2023年)[J]. 建筑, 2024(2): 46-59. |
| China Association of Building Energy Efficiency, Institute of Urban-rural Construction and Development, Chongqing University. Research report on building energy consumption and carbon emissions in China (2023)[J]. Construction and Architecture, 2024(2): 46-59. | |
| [3] | Deb S K. A novel electrophotographic system[J]. Applied Optics, 1969, 8(S1): 192-195. |
| [4] | Svensson J S E M, Granqvist C G. Electrochromic tungsten oxide films for energy efficient windows[J]. Solar Energy Materials, 1984, 11(1/2): 29-34. |
| [5] | Granqvist C G. Oxide electrochromics: an introduction to devices and materials[J]. Solar Energy Materials and Solar Cells, 2012, 99: 1-13. |
| [6] | Llordés A, Garcia G, Gazquez J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites[J]. Nature, 2013, 500(7462): 323-326. |
| [7] | Mandal J, Du S C, Dontigny M, et al. Li4Ti5O12: a visible-to-infrared broadband electrochromic material for optical and thermal management[J]. Advanced Functional Materials, 2018, 28(36): 1802180. |
| [8] | Zhang S L, Cao S, Zhang T R, et al. Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance[J]. Materials Horizons, 2018, 5(2): 291-297. |
| [9] | Manjakkal L, Pereira L, Kumi Barimah E, et al. Multifunctional flexible and stretchable electrochromic energy storage devices[J]. Progress in Materials Science, 2024, 142: 101244. |
| [10] | Gong H, Li A, Fu G X, et al. Ultrathin flexible electrochromic devices enabled by highly transparent ion-conducting films[J]. Journal of Materials Chemistry A, 2023, 11(16): 8939-8949. |
| [11] | Lee S J, Lee S H, Kang H W, et al. Flexible electrochromic and thermochromic hybrid smart window based on a highly durable ITO/graphene transparent electrode[J]. Chemical Engineering Journal, 2021, 416: 129028. |
| [12] | Ganesha M K, Hakkeem H, Mondal I, et al. An ITO free all tungsten-based electrochromic energy storage device as smart window[J]. Small, 2024, 20(48): e2405467. |
| [13] | Liu L, Zhen M S, Wang L Y, et al. Full-temperature all-solid-state dendrite-free Zn-ion electrochromic energy storage devices for intelligent applications[J]. Chemical Engineering Journal, 2023, 468: 143837. |
| [14] | Buch V R, Chawla A K, Rawal S K. Review on electrochromic property for WO3 thin films using different deposition techniques[J]. Materials Today: Proceedings, 2016, 3(6): 1429-1437. |
| [15] | Zhang X, Tian Y L, Li W J, et al. Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109916. |
| [16] | Zheng H D, Ou J Z, Strano M S, et al. Nanostructured tungsten oxide—properties, synthesis, and applications[J]. Advanced Functional Materials, 2011, 21(12): 2175-2196. |
| [17] | Gayathri P T G, Shaiju S S, Remya R, et al. Hydrated tungsten oxide nanosheet electrodes for broadband electrochromism and energy storage[J]. Materials Today Energy, 2018, 10: 380-387. |
| [18] | Azam A, Kim J, Park J, et al. Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices[J]. Nano Letters, 2018, 18(9): 5646-5651. |
| [19] | Gao T, Jelle B P. Electrochromism of hexagonal sodium tungsten bronze nanorods[J]. Solar Energy Materials and Solar Cells, 2018, 177: 3-8. |
| [20] | Phan G T, Van Pham D, Patil R A, et al. Fast-switching electrochromic smart windows based on NiO-nanorods counter electrode[J]. Solar Energy Materials and Solar Cells, 2021, 231: 111306. |
| [21] | Zhou D, Shi F, Xie D, et al. Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage[J]. Journal of Colloid and Interface Science, 2016, 465: 112-120. |
| [22] | Liu X S, Wang G, Wang J, et al. Electrochromic and capacitive properties of WO3 nanowires prepared by one-step water bath method[J]. Coatings, 2022, 12(5): 595. |
| [23] | Liu P C, Wang B, Wang C C, et al. Amorphous tungsten oxide nanodots for chromatic applications[J]. Advanced Functional Materials, 2024, 34(34): 2400760. |
| [24] | Yao Y J, Zhao Q, Wei W, et al. WO3 quantum-dots electrochromism[J]. Nano Energy, 2020, 68: 104350. |
| [25] | Wang S, Xu H B, Zhao J P, et al. Two-dimensional WO3 nanosheets for high-performance electrochromic supercapacitors[J]. Inorganic Chemistry Frontiers, 2022, 9(3): 514-523. |
| [26] | Huang Y, Wang B S, Lyu P, et al. Oxygen-deficient tungsten oxide nanoflowers for dynamically tunable near-infrared light transmittance of smart windows[J]. Nano Research, 2023, 16(10): 12165-12172. |
| [27] | Ou J Z, Balendhran S, Field M R, et al. The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties[J]. Nanoscale, 2012, 4(19): 5980-5988. |
| [28] | Dalavi D S, Devan R S, Patil R A, et al. Efficient electrochromic performance of nanoparticulate WO3 thin films[J]. Journal of Materials Chemistry C, 2013, 1(23): 3722-3728. |
| [29] | 陈莉蓉, 葛锐, 王杏如, 等. 无机电致变色材料多波段调控的研究进展[J]. 材料研究与应用, 2023, 17(5): 835-863. |
| Chen L R, Ge R, Wang X R, et al. Recent progress on inorganic electrochromic material with multi-band modulation[J]. Materials Research and Application, 2023, 17(5): 835-863. | |
| [30] | Wang L K, Liu Y, Han G R, et al. Dual-band electrochromic film based on mesoporous h-WO3/o-WO3·H2O/r-TiO2 for high performance smart windows[J]. Solar Energy Materials and Solar Cells, 2023, 250: 112053. |
| [31] | Wang L K, Liu Y, Han G R, et al. Controllable synthesis of hexagonal WO3 nanorod-cluster films with high electrochromic performance in NIR range[J]. Journal of Alloys and Compounds, 2022, 890: 161833. |
| [32] | Zhao F Y, Cheng Z Q, Xu G, et al. A facile electrochemical lithiation method to prepare porous nickel oxide electrodes with high electrochromic performance[J]. Electrochimica Acta, 2023, 441: 141863. |
| [33] | Zhao F Y, He H Y, Cheng Z Q, et al. Improving electrochromic performance of porous nickel oxide electrode via Cu doping[J]. Electrochimica Acta, 2022, 417: 140332. |
| [34] | Zhang S L, Cao S, Zhang T R, et al. Plasmonic oxygen-deficient TiO2- x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling[J]. Advanced Materials, 2020, 32(43): e2004686. |
| [35] | Gao Y, Lei P Y, Zhang S Y, et al. A layer-stacked NiO nanowire/nanosheet homostructure for electrochromic smart windows with ultra-large optical modulation[J]. Nanoscale, 2023, 15(19): 8685-8692. |
| [36] | Huang J J, Zhang S Y, Qin Q, et al. Designing V2O5/MXene van der Waals heterostructure for complementary electrochromic dual-ion capacitor[J]. Chemical Engineering Journal, 2023, 476: 146626. |
| [37] | Ling Y, Fan H W, Wang K, et al. Electrochemical actuators with multicolor changes and multidirectional actuation[J]. Small, 2022, 18(15): e2107778. |
| [38] | Sun M T, Wang L K, Shi G H, et al. Niobium-tungsten bimetallic oxide electrodes with high dual-band electrochromic performance prepared by hydrothermal method[J]. Journal of the Electrochemical Society, 2023, 170(12): 126503. |
| [39] | Cai G F, Zhu R, Liu S Y, et al. Tunable intracrystal cavity in tungsten bronze-like bimetallic oxides for electrochromic energy storage[J]. Advanced Energy Materials, 2022, 12(5): 2103106. |
| [40] | Ma D Y, Yang T, Feng X Z, et al. Quadruple control electrochromic devices utilizing Ce4W9O33 electrodes for visible and near-infrared transmission intelligent modulation[J]. Advanced Science, 2024, 11(14): e2307223. |
| [41] | Sorouri A M, Sobhani-Nasab A, Ganjali M R, et al. Metal tungstates nanostructures for supercapacitors: a review[J]. Applied Materials Today, 2023, 32: 101819. |
| [42] | 武亚奇, 何恩节. 双钙钛矿钨酸盐荧光粉的递进式荧光增强及植物LED应用[J]. 宁夏师范学院学报, 2023, 44(10): 52-59. |
| Wu Y Q, He E J. Application in plant LED and progressive luminescence enhancement of double perovskite tungstate phosphor[J]. Journal of Ningxia Normal University, 2023, 44(10): 52-59. | |
| [43] | Fukuda K, Akatsuka K, Ebina Y, et al. Photochromogenic nanosheet crystallites of tungstate with a 2D bronze structure[J]. Inorganic Chemistry, 2012, 51(3): 1540-1543. |
| [44] | Schaak R E, Mallouk T E. Exfoliation of layered rutile and perovskite tungstates[J]. Chemical Communications, 2002(7): 706-707. |
| [45] | Huang L L, Liu M H, Lin H X, et al. Shape regulation of high-index facet nanoparticles by dealloying[J]. Science, 2019, 365(6458): 1159-1163. |
| [46] | Gadiyar C, Loiudice A, D'Ambra F, et al. Nanocrystals as precursors in solid-state reactions for size- and shape-controlled polyelemental nanomaterials[J]. Journal of the American Chemical Society, 2020, 142(37): 15931-15940. |
| [47] | Thongtem T, Kungwankunakorn S, Kuntalue B, et al. Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature[J]. Journal of Alloys and Compounds, 2010, 506(1): 475-481. |
| [48] | Chen J H, Feng S Y, Deng J H, et al. Application of precursor with ultra-small particle size and uniform particle distribution for ultra-high nickel single-crystal cathode materials by coprecipitation method[J]. Journal of Colloid and Interface Science, 2025, 679: 798-810. |
| [49] | Kanade V K, Kanade C K, Pujari R B, et al. Surface and diffusive capacity controlled electrochemistry in nickel boride/nickel borate[J]. Journal of Industrial and Engineering Chemistry, 2022, 116: 351-358. |
| [50] | Rahimi-Nasrabadi M, Pourmortazavi S M, Ganjali M R, et al. Optimizing the synthesis procedure and characterization of t e r b i u m ( Ⅲ ) tungstate nanoparticles as high performance photocatalysts[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(13): 9724-9731. |
| [51] | Rahimi-Nasrabadi M, Pourmortazavi S M, Ganjali M R, et al. Synthesis procedure optimization and characterization of e u r o p i u m ( Ⅲ ) tungstate nanoparticles[J]. Journal of Molecular Structure, 2014, 1074: 85-91. |
| [52] | Pourmortazavi S M, Rahimi-Nasrabadi M, Khalilian-Shalamzari M, et al. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles[J]. Applied Surface Science, 2012, 263: 745-752. |
| [53] | Huang B, Wang H Y, Liang S F, et al. Two-dimensional porous cobalt-nickel tungstate thin sheets for high performance supercapattery[J]. Energy Storage Materials, 2020, 32: 105-114. |
| [54] | Rahimi-Nasrabadi M, Pourmohamadian V, Karimi M S, et al. Assessment of supercapacitive performance of europium tungstate nanoparticles prepared via hydrothermal method[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(17): 12391-12398. |
| [55] | Zeng S Y, Tang R F, Duan S X, et al. Kinetically controlled synthesis of bismuth tungstate with different structures by a NH4F assisted hydrothermal method and surface-dependent photocatalytic properties[J]. Journal of Colloid and Interface Science, 2014, 432: 236-245. |
| [56] | Wu Z C, Wang X, Huang J S, et al. A Co-doped Ni-Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting[J]. Journal of Materials Chemistry A, 2018, 6(1): 167-178. |
| [57] | Chen L P, Li C E, Zhao Y F, et al. Constructing 3D Bi/Bi4O5I2 microspheres with rich oxygen vacancies by one-pot solvothermal method for enhancing photocatalytic activity on mercury removal[J]. Chemical Engineering Journal, 2021, 425: 131599. |
| [58] | Chen T, Meng J, Lin Q Y, et al. One-step synthesis of hollow BaZrO3 nanocrystals with oxygen vacancies for photocatalytic hydrogen evolution from pure water[J]. Journal of Alloys and Compounds, 2019, 780: 498-503. |
| [59] | Jiang L, Ding H Z, Xu M S, et al. UV-vis-NIR full-range responsive carbon dots with large multiphoton absorption cross sections and deep-red fluorescence at nucleoli and in vivo [J]. Small, 2020, 16(19): e2000680. |
| [60] | Xie Y, Qian Y, Wang W, et al. A benzene-thermal synthetic route to nanocrystalline GaN[J]. Science, 1996, 272(5270): 1926-1927. |
| [61] | Li Q Y, Deng S S, Li D L, et al. Tungsten bronze Cs x WO3 nanopowders doped by Ti to enhance transparent thermal insulation ability for energy saving[J]. Journal of Alloys and Compounds, 2023, 944: 169164. |
| [62] | Ahmadi F, Rahimi-Nasrabadi M, Behpour M. Synthesis Nd2TiO5 nanoparticles with different morphologies by novel approach and its photocatalyst application[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(2): 1531-1536. |
| [63] | 魏芳, 李玉宏, 张振乾. 溶胶凝胶法制备纳米二氧化硅及性能研究[J]. 山东化工, 2024, 53(17): 13-16. |
| Wei F, Li Y H, Zhang Z Q. Study on preparation and properties of nano silica by sol gel method[J]. Shandong Chemical Industry, 2024, 53(17): 13-16. | |
| [64] | 龚圣, 周新华, 尹国强, 等. 溶胶-凝胶法制备纳米锑掺杂氧化锡的团聚消除[J]. 化工学报, 2011, 62(5): 1460-1465. |
| Gong S, Zhou X H, Yin G Q, et al. Agglomeration eliminating nano-sized antimony doped tin oxide prepared by sol-gel method[J]. CIESC Journal, 2011, 62(5): 1460-1465. | |
| [65] | Zhang L H, Ma H R, Ying Z H, et al. Lowering charge transport barriers by eliminating the electric double layer residues to reconstruct adjacent SnO2 nanocrystals for high-efficiency flexible perovskite solar cells[J]. Advanced Functional Materials, 2024, 34(45): 2406946. |
| [66] | Li L, Xu H, Chen Y H, et al. Preparation and optical properties of hexa-tungsten bronze-type CsNbW2O9 semiconductor[J]. Optical Materials, 2017, 66: 361-366. |
| [67] | Rahmani M, Sedaghat T. A facile sol-gel process for synthesis of ZnWO4 nanopartices with enhanced band gap and study of its photocatalytic activity for degradation of methylene blue[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29(1): 220-228. |
| [68] | Prasad A K, Park J Y, Jung H Y, et al. Electrochemical deposition of Ni-WO3 thin-film composites for electrochromic energy storage applications: novel approach toward quantum-dot-sensitized solar cell-assisted Ni-WO3 electrochromic device[J]. Journal of Industrial and Engineering Chemistry, 2023, 117: 500-509. |
| [69] | Yourey J E, Bartlett B M. Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for wateroxidation[J]. Journal of Materials Chemistry, 2011, 21(21): 7651-7660. |
| [70] | Santiago A A G, Fernandes Y L R L, Tranquilin R L, et al. Influence of Zn1- x Ca x WO4 heterostructures synthesized by spray pyrolysis on photoluminescence property[J]. Ceramics International, 2019, 45(17): 23256-23264. |
| [71] | Patil A R, Dongale T D, Namade L D, et al. Sprayed FeWO4 thin film-based memristive device with negative differential resistance effect for non-volatile memory and synaptic learning applications[J]. Journal of Colloid and Interface Science, 2023, 642: 540-553. |
| [72] | Pourmortazavi S M, Rahimi-Nasrabadi M, Fazli Y, et al. Taguchi method assisted optimization of electrochemical synthesis and structural characterization of copper tungstate nanoparticles[J]. International Journal of Refractory Metals and Hard Materials, 2015, 51: 29-34. |
| [73] | Nakakura S, Ogi T. Hexagonal cesium tungsten bronze nanoparticles produced by solvent-free spray pyrolysis and their near infrared absorption properties[J]. Journal of Materials Chemistry C, 2021, 9(25): 8037-8042. |
| [74] | Jiang X N, Chen S, Zhang X R, et al. Carbon-doped flower-like Bi2WO6 decorated carbon nanosphere nanocomposites with enhanced visible light photocatalytic degradation of tetracycline[J]. Advanced Composites and Hybrid Materials, 2023, 6(1): 47. |
| [75] | Singh V P, Singh G, Patel R, et al. Highly sensitive detection of hazardous hydroquinone and chloramphenicol in the presence of paracetamol using cobalt tungstate (CoWO4) nanoplates modified electrode[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111208. |
| [76] | Ravi G, Mamidi S, Sreenu K, et al. Layered Na2W4O13 and its cation/anion doped analogues for the treatment of polluted water[J]. FlatChem, 2019, 13: 1-7. |
| [77] | Ofori F A, Sheikh F A, Appiah-Ntiamoah R, et al. A simple method of electrospun tungsten trioxide nanofibers with enhanced visible-light photocatalytic activity[J]. Nano-Micro Letters, 2015, 7(3): 291-297. |
| [78] | Balaji S, Djaoued Y, Albert A S, et al. Construction and characterization of tunable meso-/macroporous tungsten oxide-based transmissive electrochromic devices[J]. Journal of Materials Science, 2009, 44(24): 6608-6616. |
| [79] | Pugolovkin L V, Cherstiouk O V, Plyasova L M, et al. Electrodeposited non-stoichiometric tungstic acid for electrochromic applications: film growth modes, crystal structure, redox behavior and stability[J]. Applied Surface Science, 2016, 388: 786-793. |
| [80] | Kuzmin A, Purans J, Kalendarev R, et al. XAS, XRD, AFM and Raman studies of nickel tungstate electrochromic thin films[J]. Electrochimica Acta, 2001, 46(13/14): 2233-2236. |
| [81] | Wei Y X, Liu W M, Li J Y, et al. Investigation on the properties of Li doped Ni-W oxide film and application for black electrochromic device[J]. Electrochimica Acta, 2022, 406: 139833. |
| [82] | Green S V, Granqvist C G, Niklasson G A. Structure and optical properties of electrochromic tungsten-containing nickel oxide films[J]. Solar Energy Materials and Solar Cells, 2014, 126: 248-259. |
| [83] | Liu G B, Liu S K, Li X L, et al. Optimized W-d band configuration in porous sodium tungsten bronze octahedron enabling Pt-like and wide-pH hydrogen evolution[J]. Nano Energy, 2024, 123: 109442. |
| [84] | Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1226419. |
| [85] | Schaak R E, Mallouk T E. Perovskites by design: a toolbox of solid-state reactions[J]. Chemistry of Materials, 2002, 14(4): 1455-1471. |
| [86] | Kishimoto F, Takanabe K. Electron storage in monolayer tungstate nanosheets produced via a scalable exfoliation method[J]. The Journal of Physical Chemistry Letters, 2024, 15(13): 3509-3515. |
| [87] | Pope T R, Lassig M N, Neher G, et al. Chromism of Bi2WO6 in single crystal and nanosheet forms[J]. Journal of Materials Chemistry C, 2014, 2(17): 3223-3230. |
| [88] | Iimura R, Hasegawa T, Yin S. Electrochromic behavior originating from the W6+/W5+ redox in aurivillius-type tungsten-based layered perovskites[J]. Inorganic Chemistry, 2022, 61(5): 2509-2516. |
| [89] | Wang R C, Sun Y Y L, Brady A, et al. Fast proton insertion in layered H2W2O7 via selective etching of an aurivillius phase[J]. Advanced Energy Materials, 2021, 11(1): 2003335. |
| [90] | Niu J L, Wang Y, Zou X L, et al. Infrared electrochromic materials, devices and applications[J]. Applied Materials Today, 2021, 24: 101073. |
| [91] | Fukuda K, Akatsuka K, Ebina Y, et al. Exfoliated nanosheet crystallite of cesium tungstate with 2D pyrochlore structure: synthesis, characterization, and photochromic properties[J]. ACS Nano, 2008, 2(8): 1689-1695. |
| [92] | Shen B X, Ding S Y, Wang Y H, et al. Novel one-pot solvothermal synthesis and phase-transition mechanism of hexagonal Cs x WO3 nanocrystals with superior near-infrared shielding property for energy-efficient windows[J]. Solar Energy, 2021, 230: 401-408. |
| [93] | He Z M, Yu P, Gao J J, et al. An energy-efficient and low-driving-voltage flexible smart window enhanced by POSS and Cs x WO3 [J]. Solar Energy Materials and Solar Cells, 2023, 250: 112096. |
| [94] | Tsunematsu H, Shi Y, Yamamoto E, et al. Gigantic thermal shielding in 2D oxide nanosheets[J]. ACS Nano, 2023, 17(12): 11396-11405. |
| [95] | Griffith K J, Wiaderek K M, Cibin G, et al. Niobium tungsten oxides for high-rate lithium-ion energy storage[J]. Nature, 2018, 559(7715): 556-563. |
| [96] | Ren R R, Liu S Y, Gao Y, et al. Tunable interaction between Zn2+ and superstructured Nb18W16O93 bimetallic oxide for multistep tinted electrochromic device[J]. ACS Energy Letters, 2023, 8(5): 2300-2307. |
| [97] | Wu C, Shao Z W, Zhai W B, et al. Niobium tungsten oxides for electrochromic devices with long-term stability[J]. ACS Nano, 2022, 16(2): 2621-2628. |
| [98] | Diao Q, Yin Y N, Jia W S, et al. Highly sensitive ethanol sensor based on Ce-doped WO3 with raspberry-like architecture[J]. Materials Research Express, 2020, 7(11): 115012. |
| [99] | Zhuang D S, Zhang Z X, Weng J B, et al. Amorphous hydrated tungsten oxides with enhanced pseudocapacitive contribution for aqueous zinc-ion electrochromic energy storage[J]. Advanced Energy Materials, 2024, 14(40): 2402603. |
| [100] | Fortunato J, Zydlewski B Z, Lei M, et al. Dual-band electrochromism in hydrous tungsten oxide[J]. ACS Photonics, 2023, 10(9): 3409-3418. |
| [101] | Sun Y Q, Fu W, Hu Y X, et al. The role of tungsten-related elements for improving the electrochemical performances of cathode materials in lithium ion batteries[J]. Tungsten, 2021, 3(3): 245-259. |
| [102] | Xiao S X, Zhang Y J, Ma L, et al. Easy-to-make sulfonatoalkyl viologen/sodium carboxymethylcellulose hydrogel-based electrochromic devices with high coloration efficiency, fast response and excellent cycling stability[J]. Dyes and Pigments, 2020, 174: 108055. |
| [103] | Lu H C, Kao S Y, Yu H F, et al. Achieving low-energy driven viologens-based electrochromic devices utilizing polymeric ionic liquids[J]. ACS Applied Materials & Interfaces, 2016, 8(44): 30351-30361. |
| [104] | Zhou X, Zhou K J, Tang L, et al. A strong and highly transparent ionogel electrolyte enabled by in situ polymerization-induced microphase separation for high-performance electrochromic devices[J]. Macromolecular Rapid Communications, 2024, 45(13): 2300736. |
| [105] | Zhou Z, Tang Y K, Zhao F Y, et al. Transparent succinonitrile-modified polyacrylate gel polymer electrolyte for solid electrochromic devices[J]. Chemical Engineering Journal, 2024, 481: 148724. |
| [106] | Li H Z, Firby C J, Elezzabi A Y. Rechargeable aqueous hybrid Zn2+/Al3+ electrochromic batteries[J]. Joule, 2019, 3(9): 2268-2278. |
| [107] | Zhang S L, Cao S, Zhang T R, et al. Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life[J]. Energy & Environmental Science, 2018, 11(10): 2884-2892. |
| [108] | Li C A, Ko B, Park K H, et al. High-performance electrochromic devices based on size-controlled 2D WO3 nanosheets prepared using the intercalation method[J]. Materials, 2023, 17(1): 41. |
| [1] | Shenghua YANG, Yangjie SUN, Xiaojun XUE, Jie MI, Jiancheng WANG, Yu FENG. Research progress on gas pollutants removal by defective metal oxides [J]. CIESC Journal, 2025, 76(6): 2469-2482. |
| [2] | Haotian AN, Zhangye HAN, Muyao LU, Awu ZHOU, Jianrong LI. Promoting industrial application of MOF: scale-up preparation and shaping [J]. CIESC Journal, 2025, 76(5): 2011-2025. |
| [3] | Jinyue WANG, Enze XIE, Hanze MA, Sheng YUAN, Guangwei HE, Zhongyi JIANG. Monoatomic layer separation membrane: progress and prospect [J]. CIESC Journal, 2025, 76(5): 1943-1959. |
| [4] | Yingdong ZHAO, Peijun JI, Riyao CONG, Haichao FU, Jialong ZHANG, Pengzhong CHEN, Xiaojun PENG. Preparation and high-resolution lithography study of organic tin photoresists containing acrylates [J]. CIESC Journal, 2025, 76(4): 1820-1830. |
| [5] | Ben’an CAI, Jianxin ZHANG, Chengjun LONG, Qiaochen DU, Xunjian CHE, Yiying ZHANG, Weihua CAI. Spray flash evaporation preparation of micro/nanoparticles [J]. CIESC Journal, 2025, 76(3): 1334-1345. |
| [6] | Ziyi XU, Yang XI, Zewen SONG, Haijun ZHOU. Advances in the application of carbon nanomaterials for zinc ion batteries [J]. CIESC Journal, 2025, 76(1): 40-52. |
| [7] | Shugang HU, Guoqing TIAN, Wenjuan LIU, Guangfei XU, Huaqing LIU, Jian ZHANG, Yanlong WANG. Preparation of nanoscale zero-valent iron and its application of reduction and oxidation technology [J]. CIESC Journal, 2024, 75(9): 3041-3055. |
| [8] | Yanhui DAI, Qizhao XIONG, Qiang FANG, Dongxiao YANG, Yi WANG, Yang CHEN, Jinping LI, Libo LI. In situ steam-assisted method for one-step synthesis of hierarchically porous Cu-BTC [J]. CIESC Journal, 2024, 75(9): 3329-3337. |
| [9] | Binglin BAI, Shen DU, Mingjia LI, Chuanqi ZHANG. Optical transmittance and electrical conductivity characteristics of single-walled carbon nanotube films based on water-phase exfoliation method [J]. CIESC Journal, 2024, 75(7): 2680-2687. |
| [10] | Lulu ZHAO, Erjun TANG, Xuteng XING, Shaojie LIU, Xiaomeng CHU, Na HU, Ze ZHANG. Effects of POSS modified graphene oxide in anti-corrosion and hydrophobic properties of coatings [J]. CIESC Journal, 2024, 75(5): 1977-1986. |
| [11] | Youming SI, Lingfeng ZHENG, Pengzhong CHEN, Jiangli FAN, Xiaojun PENG. Performance and mechanism of novel antimony oxo cluster photoresist [J]. CIESC Journal, 2024, 75(4): 1705-1717. |
| [12] | Xiaoqing YAN, Ying ZHAO, Yuzhe ZHANG, Honghui OU, Qizhong HUANG, Huagui HU, Guidong YANG. Preparation of five-fold twinned copper nanowires@polypyrrole and their electrocatalytic conversion of nitrate to ammonia [J]. CIESC Journal, 2024, 75(4): 1519-1532. |
| [13] | Yuwei YANG, Min LI, Zhiying YAO, Qinlin SUN, Yang LIU, Dan GE, Bingbing SUN. Application and prospect of organoids-on-chip in the study of nano-drug delivery systems [J]. CIESC Journal, 2024, 75(4): 1209-1221. |
| [14] | Rui CHANG, Ruirui XING, Xuehai YAN. Green and biorecyclable materials based on peptide noncovalent chemistry [J]. CIESC Journal, 2024, 75(4): 1317-1332. |
| [15] | Xi WU, Bo SUN, Yindong LIU, Chuanlei QI, Kaiyi CHEN, Luhai WANG, Chong XU, Yongfeng LI. Research progress in preparation technology of pitch-based carbon anode materials for sodium-ion batteries [J]. CIESC Journal, 2024, 75(4): 1270-1283. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||