CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4601-4612.DOI: 10.11949/0438-1157.20250280
• Special Column: Modeling and Simulation in Process Engineering • Previous Articles Next Articles
Peng TIAN1(
), Zhonglin ZHANG1(
), Chao REN1, Guochao MENG1,2, Xiaogang HAO1(
), Yegang LIU1,3, Qiwang HOU1,4, Abuliti ABUDULA5, Guoqing GUAN6
Received:2025-03-21
Revised:2025-04-14
Online:2025-10-23
Published:2025-09-25
Contact:
Zhonglin ZHANG, Xiaogang HAO
田鹏1(
), 张忠林1(
), 任超1, 孟国超1,2, 郝晓刚1(
), 刘叶刚1,3, 侯起旺1,4, ABUDULA Abuliti5, 官国清6
通讯作者:
张忠林,郝晓刚
作者简介:田鹏(1999—),男,硕士研究生,2448771441@qq.com
基金资助:CLC Number:
Peng TIAN, Zhonglin ZHANG, Chao REN, Guochao MENG, Xiaogang HAO, Yegang LIU, Qiwang HOU, Abuliti ABUDULA, Guoqing GUAN. Modeling and optimization of rectisol process based on self-heat regeneration[J]. CIESC Journal, 2025, 76(9): 4601-4612.
田鹏, 张忠林, 任超, 孟国超, 郝晓刚, 刘叶刚, 侯起旺, ABUDULA Abuliti, 官国清. 基于自热再生的一种低温甲醇洗工艺建模与优化[J]. 化工学报, 2025, 76(9): 4601-4612.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 原料气 | 甲醇 |
|---|---|---|
| 表压/MPa | 5.8 | 5 |
| 温度/℃ | -15.4 | -52.4 |
| 质量流率/(kg·h-1) | 289221.8 | 425494 |
| 摩尔流量/(kmol·h-1) | 12972.8 | 13281.2 |
| CO2 | 4663.5919 | 0 |
| H2 | 5730.7344 | 0 |
| N2 | 30.3564 | 0 |
| H2S | 21.4050 | 0 |
H2O CH4 | 22.3132 10.7674 | 4.6235 0 |
| CO | 2487.5344 | 0 |
AR COS CH3OH | 14.3998 0.6486 0 | 0 0 13276.57 |
Table 1 Feed composition and conditions
| 参数 | 原料气 | 甲醇 |
|---|---|---|
| 表压/MPa | 5.8 | 5 |
| 温度/℃ | -15.4 | -52.4 |
| 质量流率/(kg·h-1) | 289221.8 | 425494 |
| 摩尔流量/(kmol·h-1) | 12972.8 | 13281.2 |
| CO2 | 4663.5919 | 0 |
| H2 | 5730.7344 | 0 |
| N2 | 30.3564 | 0 |
| H2S | 21.4050 | 0 |
H2O CH4 | 22.3132 10.7674 | 4.6235 0 |
| CO | 2487.5344 | 0 |
AR COS CH3OH | 14.3998 0.6486 0 | 0 0 13276.57 |
| 流股 | 参数 |
|---|---|
| 净化气 | S≤1.0×10-7,CO2≤2.3%±0.2% |
| 克劳斯气 | H2S+COS≥25% |
| 尾气 | H2S≤2.5×10-5,S≤2.3 kg·h-1,甲醇≤1.0×10-4,甲醇流量≤50 kg·h-1 |
Table 2 Design parameters
| 流股 | 参数 |
|---|---|
| 净化气 | S≤1.0×10-7,CO2≤2.3%±0.2% |
| 克劳斯气 | H2S+COS≥25% |
| 尾气 | H2S≤2.5×10-5,S≤2.3 kg·h-1,甲醇≤1.0×10-4,甲醇流量≤50 kg·h-1 |
| 参数 | 传统工艺 | 循环工艺 |
|---|---|---|
| CO2产量/(kmol·h-1) | 2788 | 3127 |
| CO2产量增加/% | — | 12.16 |
| CO2捕集效率/% | 60.17 | 67.49 |
| 尾气CO2排放量/(kmol·h-1) | 1683 | 1322 |
Table 3 Comparison of CO2 capture rate and emissions results
| 参数 | 传统工艺 | 循环工艺 |
|---|---|---|
| CO2产量/(kmol·h-1) | 2788 | 3127 |
| CO2产量增加/% | — | 12.16 |
| CO2捕集效率/% | 60.17 | 67.49 |
| 尾气CO2排放量/(kmol·h-1) | 1683 | 1322 |
| 参数 | 传统工艺 | 循环工艺 | 单塔压缩 | 双塔压缩 |
|---|---|---|---|---|
| 电/kW | 1529.96 | 2463.01 | 7773.04 | 7980.94 |
| 蒸汽/kW | 36655.43 | 29328.53 | 9014.18 | 8444.78 |
| 冷却剂/kW | 39762.04 | 33992.63 | 18710.80 | 18484.72 |
| 总能耗/kW | 81007.35 | 70710.17 | 51044.10 | 50872.32 |
| 能耗减少/% | — | 12.71 | 36.98 | 37.20 |
Table 4 Comparison of energy analysis results
| 参数 | 传统工艺 | 循环工艺 | 单塔压缩 | 双塔压缩 |
|---|---|---|---|---|
| 电/kW | 1529.96 | 2463.01 | 7773.04 | 7980.94 |
| 蒸汽/kW | 36655.43 | 29328.53 | 9014.18 | 8444.78 |
| 冷却剂/kW | 39762.04 | 33992.63 | 18710.80 | 18484.72 |
| 总能耗/kW | 81007.35 | 70710.17 | 51044.10 | 50872.32 |
| 能耗减少/% | — | 12.71 | 36.98 | 37.20 |
| 参数 | 单位CO2捕集能耗/(kWh·t-1) |
|---|---|
| 文献[ | 319.47 |
| 企业数据[ | 250~400 |
| 文献[ | 380.28 |
| 文献[ | 280.00 |
| 单塔压缩工艺 | 257.57 |
| 双塔压缩工艺 | 253.59 |
Table 5 Comparison of energy consumption per unit of CO2 capture
| 参数 | 单位CO2捕集能耗/(kWh·t-1) |
|---|---|
| 文献[ | 319.47 |
| 企业数据[ | 250~400 |
| 文献[ | 380.28 |
| 文献[ | 280.00 |
| 单塔压缩工艺 | 257.57 |
| 双塔压缩工艺 | 253.59 |
| 参数 | 传统工艺 | 循环工艺 | 单塔压缩 | 双塔压缩 |
|---|---|---|---|---|
| 原料/kW | 624575.17 | 624575.17 | 624575.17 | 624575.17 |
| 电量㶲/kW | 1529.96 | 2463.01 | 7773.04 | 7980.94 |
| 热量㶲/kW | 10182.95 | 8248.69 | 2052.24 | 1915.08 |
| 冷量㶲/kW | 6710.02 | 5626.34 | 3674.99 | 3578.22 |
| 总输入/kW | 642998.11 | 640913.17 | 638075.44 | 638049.41 |
| 引入系统㶲量/kW | 18422.93 | 16338.04 | 13500.27 | 13474.24 |
| 㶲量减少/% | — | 11.32 | 26.72 | 26.86 |
| 总输出/kW | 615312.90 | 615179.97 | 615180.40 | 615179.97 |
| 㶲损失/kW | 27685.21 | 25709.59 | 22895.04 | 22869.44 |
| 㶲效率/% | 95.69 | 95.98 | 96.41 | 96.42 |
Table 6 Comparison of exergy analysis results
| 参数 | 传统工艺 | 循环工艺 | 单塔压缩 | 双塔压缩 |
|---|---|---|---|---|
| 原料/kW | 624575.17 | 624575.17 | 624575.17 | 624575.17 |
| 电量㶲/kW | 1529.96 | 2463.01 | 7773.04 | 7980.94 |
| 热量㶲/kW | 10182.95 | 8248.69 | 2052.24 | 1915.08 |
| 冷量㶲/kW | 6710.02 | 5626.34 | 3674.99 | 3578.22 |
| 总输入/kW | 642998.11 | 640913.17 | 638075.44 | 638049.41 |
| 引入系统㶲量/kW | 18422.93 | 16338.04 | 13500.27 | 13474.24 |
| 㶲量减少/% | — | 11.32 | 26.72 | 26.86 |
| 总输出/kW | 615312.90 | 615179.97 | 615180.40 | 615179.97 |
| 㶲损失/kW | 27685.21 | 25709.59 | 22895.04 | 22869.44 |
| 㶲效率/% | 95.69 | 95.98 | 96.41 | 96.42 |
| 项目 | 传统工艺 | 单塔压缩 | 双塔压缩 |
|---|---|---|---|
| 换热器㶲损失/kW | 12217.48 | 8035.49 | 7982.75 |
| 混合器和塔设备㶲损失/kW | 8590.72 | 7631.28 | 7629.64 |
| 阀门等压力设备㶲损失/kW | 5883.11 | 5097.32 | 5089.81 |
| 电功率设备㶲损失/kW | 993.90 | 2130.95 | 2167.24 |
Table 7 Calculation results of exergy loss
| 项目 | 传统工艺 | 单塔压缩 | 双塔压缩 |
|---|---|---|---|
| 换热器㶲损失/kW | 12217.48 | 8035.49 | 7982.75 |
| 混合器和塔设备㶲损失/kW | 8590.72 | 7631.28 | 7629.64 |
| 阀门等压力设备㶲损失/kW | 5883.11 | 5097.32 | 5089.81 |
| 电功率设备㶲损失/kW | 993.90 | 2130.95 | 2167.24 |
| 参数 | 传统工艺 | 改进工艺 | 单塔压缩 | 双塔压缩 |
|---|---|---|---|---|
| 塔/106 USD | 21.09 | 23.83 | 23.83 | 23.83 |
| 泵/106 USD | 0.45 | 0.58 | 0.58 | 0.58 |
| 压缩机/106 USD | 0.89 | 2.67 | 12.43 | 12.89 |
| 换热器/106 USD | 12.34 | 11.17 | 13.34 | 15.23 |
| 闪蒸器/106 USD | 0.17 | 0.19 | 0.19 | 0.19 |
| 再沸器/106 USD | 1.56 | 1.39 | — | — |
| 甲醇/106 USD | 0.18 | 0.16 | 0.16 | 0.16 |
| 设备成本/106 USD | 36.68 | 39.99 | 50.53 | 52.88 |
| 固定资本/106 USD | 93.90 | 102.37 | 129.35 | 135.37 |
| 营运资本/106 USD | 18.34 | 19.99 | 25.26 | 26.44 |
| 总资本投资/106 USD | 112.24 | 122.36 | 154.61 | 161.81 |
Table 8 Comparison of total capital investments
| 参数 | 传统工艺 | 改进工艺 | 单塔压缩 | 双塔压缩 |
|---|---|---|---|---|
| 塔/106 USD | 21.09 | 23.83 | 23.83 | 23.83 |
| 泵/106 USD | 0.45 | 0.58 | 0.58 | 0.58 |
| 压缩机/106 USD | 0.89 | 2.67 | 12.43 | 12.89 |
| 换热器/106 USD | 12.34 | 11.17 | 13.34 | 15.23 |
| 闪蒸器/106 USD | 0.17 | 0.19 | 0.19 | 0.19 |
| 再沸器/106 USD | 1.56 | 1.39 | — | — |
| 甲醇/106 USD | 0.18 | 0.16 | 0.16 | 0.16 |
| 设备成本/106 USD | 36.68 | 39.99 | 50.53 | 52.88 |
| 固定资本/106 USD | 93.90 | 102.37 | 129.35 | 135.37 |
| 营运资本/106 USD | 18.34 | 19.99 | 25.26 | 26.44 |
| 总资本投资/106 USD | 112.24 | 122.36 | 154.61 | 161.81 |
| 参数 | 传统工艺 | 循环工艺 | 单塔压缩 | 双塔压缩 |
|---|---|---|---|---|
| 蒸汽/106 USD | 8.21 | 6.57 | 2.02 | 1.89 |
| 电量/106 USD | 0.74 | 1.19 | 3.82 | 3.92 |
| 冷却剂/106 USD | 6.87 | 5.83 | 3.24 | 3.20 |
| 总运行成本/106 USD | 15.82 | 13.59 | 9.08 | 9.01 |
| 年度运行费用/106 USD | 23.30 | 21.75 (-6.65%) | 19.38 (-17.25%) | 19.79 (-15.06%) |
| 新增设备静态回收期/年 | — | 4.53 | 6.43 | 7.27 |
| 设备折旧年限/年 | 15 | 15 | 15 | 15 |
| 总生产成本/106 USD | 38.05 | 37.34 | 36.98 | 38.02 |
| 单位CO2产品成本/(USD·t-1) | 38.77 | 33.92 (-12.50%) | 33.6 (-13.33%) | 34.54 (-10.91%) |
Table 9 Comparison of operating cost results
| 参数 | 传统工艺 | 循环工艺 | 单塔压缩 | 双塔压缩 |
|---|---|---|---|---|
| 蒸汽/106 USD | 8.21 | 6.57 | 2.02 | 1.89 |
| 电量/106 USD | 0.74 | 1.19 | 3.82 | 3.92 |
| 冷却剂/106 USD | 6.87 | 5.83 | 3.24 | 3.20 |
| 总运行成本/106 USD | 15.82 | 13.59 | 9.08 | 9.01 |
| 年度运行费用/106 USD | 23.30 | 21.75 (-6.65%) | 19.38 (-17.25%) | 19.79 (-15.06%) |
| 新增设备静态回收期/年 | — | 4.53 | 6.43 | 7.27 |
| 设备折旧年限/年 | 15 | 15 | 15 | 15 |
| 总生产成本/106 USD | 38.05 | 37.34 | 36.98 | 38.02 |
| 单位CO2产品成本/(USD·t-1) | 38.77 | 33.92 (-12.50%) | 33.6 (-13.33%) | 34.54 (-10.91%) |
| 参数 | 传统工艺 | 循环工艺 | 单塔压缩 | 双塔压缩 |
|---|---|---|---|---|
| 蒸汽CO2/(kg·h-1) | 18711.04 | 14970.87 | 4601.41 | 4310.75 |
| 电CO2/(kg·h-1) | 98.95 | 376.97 | 2455.85 | 2536.85 |
| 总CO2排放/(kg·h-1) | 18809.99 | 15347.84 | 7057.26 | 6847.60 |
| 排放减少/% | — | 18.41 | 62.48 | 63.59 |
Table 10 Comparison of CO2 emission results
| 参数 | 传统工艺 | 循环工艺 | 单塔压缩 | 双塔压缩 |
|---|---|---|---|---|
| 蒸汽CO2/(kg·h-1) | 18711.04 | 14970.87 | 4601.41 | 4310.75 |
| 电CO2/(kg·h-1) | 98.95 | 376.97 | 2455.85 | 2536.85 |
| 总CO2排放/(kg·h-1) | 18809.99 | 15347.84 | 7057.26 | 6847.60 |
| 排放减少/% | — | 18.41 | 62.48 | 63.59 |
| [1] | Petroleum British. Statistical review of world energy 2024[R]. UK: BP, 2024. |
| [2] | 郭李恒, 丁玉栋, 廖强, 等. 基于蒸汽压缩-分流的电厂烟气CO2捕集过程模拟优化[J]. 动力工程学报, 2021, 41(7): 565-571. |
| Guo L H, Ding Y D, Liao Q, et al. Simulation and optimization of carbon dioxide process for flue gas in power plants based on vapor compression and split flow[J]. Journal of Chinese Society of Power Engineering, 2021, 41(7): 565-571. | |
| [3] | Qu Y P, Sun J J. A quantitative investigation of the influence produced by the J-T valve replacement with nitrogen gas expander in Rectisol process[J]. Separation and Purification Technology, 2024, 345: 127364. |
| [4] | 相宏伟, 杨勇, 李永旺. 碳中和目标下的煤化工变革与发展[J]. 化工进展, 2022, 41(3): 1399-1408. |
| Xiang H W, Yang Y, Li Y W. Transformation and development of coal chemical industry under the goal of carbon neutralization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1399-1408. | |
| [5] | 付楚芮. 现代煤化工气化能耗评价及节能潜力研究[J]. 中国煤炭, 2024, 50(8): 181-188. |
| Fu C R. Research on energy consumption evaluation and energy conservation potential of modern coal chemical gasification[J]. China Coal, 2024, 50(8): 181-188. | |
| [6] | 杨学萍. 碳中和背景下现代煤化工技术路径探索[J]. 化工进展, 2022, 41(7): 3402-3412. |
| Yang X P. Exploration on technical path of modern coal chemical industry under the background of carbon neutralization[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3402-3412. | |
| [7] | Xue C L, Cheng W P, Hao W M, et al. CH4/N2 adsorptive separation on zeolite X/AC composites[J]. Journal of Chemistry, 2019, 2019(1): 2078360. |
| [8] | Liang J X, Han H Y, Li W B, et al. Experimental study on the absorption enhancement of CO2 by MDEA-MEA based nanofluids[J]. The Canadian Journal of Chemical Engineering, 2022, 100(11): 3335-3344. |
| [9] | Ma S C, Song H H, Sun Y X. Ammonia escape inhibited by NHD in the process of carbon capture using ammonia solution[J]. Advanced Materials Research, 2012, 610/611/612/613: 1901-1904. |
| [10] | Liu S S, Zhou J F, Yang S Y. Advanced Rectisol wash equipment incorporating syngas liquefaction and methane recovery for enhanced energy management[J]. Energy, 2024, 299: 131431. |
| [11] | 张习文. 煤化工低温甲醇洗捕集CO2工艺流程模拟与优化研究[D]. 南京: 东南大学, 2023. |
| Zhang X W. Study on simulation and optimization of CO2 capture process by methanol washing at low temperature in coal chemical industry[D]. Nanjing: Southeast University, 2023. | |
| [12] | Sharma I, Hoadley A F A, Mahajani S M, et al. Multi-objective optimisation of a Rectisol™ process for carbon capture[J]. Journal of Cleaner Production, 2016, 119: 196-206. |
| [13] | Feng Z, Wang N, Li X H, et al. Process optimization, energy consumption analysis, and environmental assessment of total CO2 capture from syngas based on [NEMH][Ac] protic ionic liquid[J]. International Journal of Greenhouse Gas Control, 2024, 131: 104037. |
| [14] | 张陆, 杨声. 低温甲醇洗碳捕集改进与优化[J]. 化工进展, 2022, 41(11): 6167-6175. |
| Zhang L, Yang S. Improvement and optimization of carbon capture via Rectisol[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6167-6175. | |
| [15] | Chen J J, Lam H L, Qian Y, et al. Combined energy consumption and CO2 capture management: improved acid gas removal process integrated with CO2 liquefaction[J]. Energy, 2021, 215: 119032. |
| [16] | Sun X J, Liu L L, Zhang T, et al. Multi-objective optimization of a Rectisol process integrated with compression-absorption cascade refrigeration system and ORC for waste heat recovery[J]. Applied Thermal Engineering, 2024, 244: 122611. |
| [17] | Taheri M, Huang S, Lei Z G. IL-emitsol: ionic liquid based [EMIM][Tf2N] solvent process for selective removal of CO2 and H2S from syngas[J]. Industrial & Engineering Chemistry Research, 2019, 58(23): 10007-10017. |
| [18] | Kansha Y, Tsuru N, Sato K, et al. Self-heat recuperation technology for energy saving in chemical processes[J]. Industrial & Engineering Chemistry Research, 2009, 48(16): 7682-7686. |
| [19] | Kansha Y, Tsuru N, Fushimi C, et al. Integrated process module for distillation processes based on self-heat recuperation technology[J]. Journal of Chemical Engineering of Japan, 2010, 43(6): 502-507. |
| [20] | 刘叶刚, 张忠林, 侯起旺, 等. TBCFB合成气制甲醇工艺过程的概念设计和计算机模拟[J]. 化工学报, 2021, 72(9): 4838-4846. |
| Liu Y G, Zhang Z L, Hou Q W, et al. Process design and simulation of synthesis gas to methanol in TBCFB system[J]. CIESC Journal, 2021, 72(9): 4838-4846. | |
| [21] | 文兆伦, 李沛瑞, 张忠林, 等. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
| Wen Z L, Li P R, Zhang Z L, et al. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration[J]. CIESC Journal, 2023, 74(7): 2988-2998. | |
| [22] | Wang Y L, Liu X B, Kraslawski A, et al. A novel process design for CO2 capture and H2S removal from the syngas using ionic liquid[J]. Journal of Cleaner Production, 2019, 213: 480-490. |
| [23] | 李春澎, 张述伟, 李燕, 等. 低能耗半贫液多级再生低温甲醇洗建模与优化[J]. 天然气化工 (C1化学与化工), 2020, 45(4): 82-86, 93. |
| Li C P, Zhang S W, Li Y, et al. Simulation and optimization of low-energy-consumption Rectisol with multistage semi-lean solvent regeneration[J]. Natural Gas Chemical Industry, 2020, 45(4): 82-86, 93. | |
| [24] | 王培松, 李燕, 张述伟. 某厂低温甲醇洗工艺模拟及升级改造的研究[J]. 现代化工, 2023, 43(3): 221-225. |
| Wang P S, Li Y, Zhang S W. Research on simulation and upgrading of Rectisol process in a factory[J]. Modern Chemical Industry, 2023, 43(3): 221-225. | |
| [25] | Huang W G, Wang J F, Lu Z J, et al. Exergoeconomic and exergoenvironmental analysis of a combined heating and power system driven by geothermal source[J]. Energy Conversion and Management, 2020, 211: 112765. |
| [26] | Gadalla M, Olujić Ž, de Rijke A, et al. Reducing CO2 emissions of internally heat-integrated distillation columns for separation of close boiling mixtures[J]. Energy, 2006, 31(13): 2409-2417. |
| [27] | Liu J, Zhang X S, Lin Z. Exergy and energy analysis of a novel dual-chilling-source refrigerating system applied to temperature and humidity independent control[J]. Energy Conversion and Management, 2019, 197: 111875. |
| [28] | 张陆. 低温甲醇洗模拟与热力性能优化研究[D]. 长沙: 中南大学, 2022. |
| Zhang L. Study on simulation of low temperature methanol washing and optimization of thermal performance[D]. Changsha: Central South University, 2022. | |
| [29] | Zhao Z K, Andre Situmorang Y, An P, et al. A biomass-based small-scale power generation system with energy/exergy recuperation[J]. Energy Conversion and Management, 2021, 227: 113623. |
| [30] | Meng G C, Li P R, Zhang Z L, et al. Modeling and thermodynamic optimization of distributed combined heat and power system based on biomass chemical looping hydrogen generation process[J]. Chemical Engineering and Processing - Process Intensification, 2024, 203: 109862. |
| [31] | Yang S, Zhang L, Song D R. Conceptual design, optimization and thermodynamic analysis of a CO2 capture process based on Rectisol[J]. Energy, 2022, 244: 122566. |
| [32] | Li X G, Cui C T, Li H, et al. Process synthesis and simulation-based optimization of ethylbenzene/styrene separation using double-effect heat integration and self-heat recuperation technology: a techno-economic analysis[J]. Separation and Purification Technology, 2019, 228: 115760. |
| [33] | Xia H, Ye Q, Feng S Y, et al. Energy-efficient design of downstream separation to produce n-butanol by several heat-integrated technologies[J]. Industrial & Engineering Chemistry Research, 2018, 57(39): 13205-13216. |
| [34] | Zhai H, Rubin E S. Systems analysis of physical absorption of CO2 in ionic liquids for pre-combustion carbon capture[J]. Environmental Science & Technology, 2018, 52(8): 4996-5004. |
| [35] | Xie M N, Zhou M X, Chen L X, et al. Techno-economic assessment of the modified Allam cycle configurations with multi-stage pump/compressor for efficient operation in hot regions[J]. Energy Conversion and Management, 2024, 306: 118291. |
| [36] | Sipöcz N, Tobiesen F A. Natural gas combined cycle power plants with CO2 capture-opportunities to reduce cost[J]. International Journal of Greenhouse Gas Control, 2012, 7: 98-106. |
| [37] | Li K K, Leigh W, Feron P, et al. Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: techno-economic assessment of the MEA process and its improvements[J]. Applied Energy, 2016, 165: 648-659. |
| [38] | 刘叶刚. TBCFB合成气制甲醇工艺模拟及自热再生能量优化[D]. 太原: 太原理工大学, 2021. |
| Liu Y G. Process simulation of methanol production from TBCFB syngas and optimization of autothermal regeneration energy[D]. Taiyuan: Taiyuan University of Technology, 2021. | |
| [39] | Qian Z H, Zhai R R, Feng L J, et al. Performance analysis of the acid gas removal from syngas based on self-heat recuperation technology[J]. Applied Thermal Engineering, 2023, 219: 119506. |
| [40] | Linde. Carbon capture, storage and utilisation[EB/OL]. [2024-05-01]. . |
| [41] | Yang S, Zhang L, Xie N, et al. Thermodynamic analysis of a semi-lean solution process for energy saving via Rectisol wash technology[J]. Energy, 2021, 226: 120402. |
| [42] | Wang J, Shen Y H, Zhang D H, et al. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas[J]. Chinese Journal of Chemical Engineering, 2023, 57: 265-279. |
| [1] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [2] | Chengyun WU, Haoran SUN. Performance simulation and fuel penalty investigation of civil aircraft air conditioning systems [J]. CIESC Journal, 2025, 76(S1): 351-359. |
| [3] | Youmiao ZHOU, Ye LIU, Feng YU, Xiaoyu LUO, Binhui WANG. Analysis of a novel dual heat source compression-ejection hybrid heat pump system [J]. CIESC Journal, 2025, 76(S1): 36-42. |
| [4] | Senqing ZHUO, Hua CHEN, Wei CHEN, Bin SHANG, Hengheng LIU, Tangtang GU, Wei BAI, Longyan WANG, Haomin CAO, Guoliang DING. Model development and software implementation for predicting APF of multi-split air conditioning system [J]. CIESC Journal, 2025, 76(S1): 370-376. |
| [5] | Xiaoguang MI, Guogang SUN, Hao CHENG, Xiaohui ZHANG. Performance simulation model and validation of printed circuit natural gas cooler [J]. CIESC Journal, 2025, 76(S1): 426-434. |
| [6] | Yuqing YANG, Yinlong LI, Gang YAN. Thermodynamic analysis of auto-cascade high-temperature heat pump cycle using low GWP refrigerant [J]. CIESC Journal, 2025, 76(S1): 43-53. |
| [7] | Wenfeng ZHANG, Wei GUO, Xinyu ZHANG, Haomin CAO, Guoliang DING. Model development and software implementation of the aluminum tube and aluminum fin heat exchanger [J]. CIESC Journal, 2025, 76(S1): 84-92. |
| [8] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [9] | Xiaofeng CAO, Huahai ZHANG, Jiangyun WANG, Limin WANG. Structural design and flow characteristics of conical gas laminar flow element [J]. CIESC Journal, 2025, 76(9): 4440-4448. |
| [10] | Jing ZHAO, Shuchen DONG, Gaoyang LI, Youke HUANG, Haosen SHI, Shuwen MIAO, Chenyan TAN, Tangqi ZHU, Yongshuai LI, Hui PAN, Hao LING. Simulation and optimization of battery performance based on the electrochemical model [J]. CIESC Journal, 2025, 76(9): 4922-4932. |
| [11] | Lu LIU, Wenyue WANG, Teng WANG, Tai WANG, Xinyu DONG, Jiancheng TANG, Shaoheng WANG. Optimization and analysis of hydrogen liquefaction process based on dual mixed refrigerant deep-cooling [J]. CIESC Journal, 2025, 76(9): 4933-4943. |
| [12] | Ke LI, Haolin XIE, Jian WEN. Multi-objective genetic algorithm optimization for thermal insulation performance of liquid hydrogen tank with multiple vapor-cooled shields [J]. CIESC Journal, 2025, 76(8): 4217-4227. |
| [13] | Xiayu FAN, Jianchen SUN, Keying LI, Xinya YAO, Hui SHANG. Machine learning drives system optimization of liquid organic hydrogen storage technology [J]. CIESC Journal, 2025, 76(8): 3805-3821. |
| [14] | Qiuying LI, Yihuai HUA, Hao CHENG, Hanwei ZHANG, Wenrui LIU, Haochuan BAI, Kai WANG, Limin QIU. Design of efficient hydrogen liquefaction process integrated with ORC system [J]. CIESC Journal, 2025, 76(7): 3651-3658. |
| [15] | Tao WANG, Guangming LI, Qiuxia HU, Jing XU. Optimization of warpage process for two-color injection products based on temporal evolution particle swarm optimization algorithm [J]. CIESC Journal, 2025, 76(7): 3403-3415. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||