[1] |
ZHANG H Y, XIAO R, JIN B S, et al. Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst[J]. Bioresource Technology, 2013, 140(7):256-262.
|
[2] |
孟晓晓, 孙锐, 袁皓, 等. 不同热解温度下玉米秸秆中碱金属K和Na的释放及半焦中赋存特性[J]. 化工学报, 2017, 68(4):1600-1607. MENG X X, SUN R, YUAN H, et al. Effect of different pyrolysis temperature on alkali metal K and Na emission and existence in semi-char[J]. CIESC Journal, 2017, 68(4):1600-1607.
|
[3] |
VISPUTE T P, ZHANG H Y, SANNA A, et al. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils[J]. Science, 2010, 330:1222-1227.
|
[4] |
HEW K L, TAMIDI A M, YUSUP S, et al. Catalytic cracking of bio-oil to organic liquid product (OLP)[J]. Bioresource Technology, 2010, 101(22):8855-8858.
|
[5] |
CHAGAS B M E, DORADO C, SERAPIGLIA M J, et al. Catalytic pyrolysis-GC/MS of spirulina:evaluation of a highly proteinaceous biomass source for production of fuels and chemicals[J]. Fuel, 2016, 179:124-134.
|
[6] |
ZHOU Y, WANG Y P, FAN L L, et al. Fast microwave-assisted catalytic co-pyrolysis of straw stalk and soapstock for bio-oil production[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124:35-41.
|
[7] |
董丽. 生物质制芳烃技术进展与发展前景[J]. 化工进展, 2013, 32(7):1526-1533. DONG L. Development of aromatics production from biomass[J]. Chemical Industry and Engineering Progress, 2013, 32(7):1526-1533.
|
[8] |
闵恩泽, 吴巍. 可再生生物质资源[J]. 化工进展, 2002, 21(5):357-359. MIN E Z, WU W. Renewable biomass resources[J]. Chemical Industry and Engineering Progress, 2002, 21(5):357-359.
|
[9] |
CHEN N Y, DEGNAN T F, KOENIG L R. Liquid fuel from carbohydrates[J]. Chemtech, 1986, 16(8):506-511.
|
[10] |
ZHU X L, LOBBAN L L, MALLINSON R G, et al. Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst[J]. Journal of Catalysis, 2011, 281(1):21-29.
|
[11] |
LI X Y, ZHANG H F, LI J, et al. Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene[J]. Applied Catalysis A General, 2013, 455(2):114-121.
|
[12] |
WARREN C. The burning question[J]. Science, 2017, 355:18-21.
|
[13] |
SINGH A, NIGAM P S, MURPHY J D. Renewable fuels from algae:an answer to debatable land based fuels[J]. Bioresource Technology, 2011, 102(1):10-16.
|
[14] |
ALAM F, DATE A, RASJIDIN R, et al. Biofuel from algae-is it a viable alternative?[J]. Procedia Engineering, 2012, 49(29):221-227.
|
[15] |
SHI F, WANG P, DUAN Y, et al. Recent developments in the production of liquid fuels via catalytic conversion of microalgae:experiments and simulations[J]. RSC Advances, 2012, 2(26):9727-9747.
|
[16] |
PIRT S J. The thermodynamic efficiency (quantum demand) and dynamics of photosynthetic growth[J]. New Phytologist, 1986, 102(1):3-37.
|
[17] |
GHASEMI Y, RASOUL-AMINI S, NASERI A T, et al. Microalgae biofuel potentials[J]. Applied Biochemisty Microbiology, 2012, 48(2):126-144.
|
[18] |
王楷, 郭庆杰, 杨林. 微拟球藻脂肪热解及对全组分制备生物油的影响[J]. 燃料化学学报, 2016, 44(1):60-68. WANG K, GUO Q J, YANG L. Pyrolysis of fat from Nannochloropsis sp. and its effect on bio-oil from pyrolysis of all components[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1):60-68.
|
[19] |
HUA M Y, LI B X. Co-pyrolysis characteristics of the sugarcane bagasse and Enteromorpha prolifera[J]. Energy Conversion and Management, 2016, 120:238-246.
|
[20] |
THANGALAZHY-GOPAKUMAR S, ADHIKARI S, CHATTANATHAN S A, et al. Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst[J]. Bioresource Technology, 2012, 118(4):150-157.
|
[21] |
DU Z Y, MA X C, LI Y, et al. Production of aromatic hydrocarbons by catalytic pyrolysis of microalgae with zeolites:catalyst screening in a pyroprobe[J]. Bioresource Technology, 2013, 139(7):397-401.
|
[22] |
WANG S, WANG Q, HU Y M, et al. Study on the synergistic co-pyrolysis behaviors of mixed rice husk and two types of seaweed by a combined TG-FTIR technique[J]. Journal of Analytical and Applied Pyrolysis, 2015, 114:109-118.
|
[23] |
常国璋, 黄艳琴, 赖喜锐, 等. 棕榈壳焦CO2气化过程中反应性及结构特性研究[J]. 燃料化学学报, 2015, 43(8):947-954. CHANG G Z, HUANG Y Q, LAI X R, et al. Experimental study on the structure and reactivity of palm kernel shell chars during CO2 gasification[J]. Journal of Fuel Chemistry and Technology, 2015, 43(8):947-954.
|
[24] |
LUO S P, BAO G R, WANG H, et al. TG-DSC-FTIR analysis of cyanobacteria pyrolysis[J]. Physics Procedia, 2012, 33:657-662.
|
[25] |
WANG J, WANG G, ZHANG M, et al. A comparative study of thermolysis characteristics of seaweed and fir wood[J]. Process Biochemistry, 2006, 41(8):1883-1886.
|
[26] |
ZHAO H, YAN H X, DONG S S, et al. Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue[J]. Journal of Thermal Analysis & Calorimetry, 2013, 111(3):1685-1690.
|
[27] |
ANCA-COUCE A, SCHARLER R. Modelling heat of reaction in biomass pyrolysis with detailed reaction schemes[J]. Fuel, 2017, 206:572-579.
|
[28] |
SHEN J C, IGATHINATHANE C, YU M L, et al. Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry[J]. Bioresource Technology, 2015, 185:89-98.
|
[29] |
杨文衍, 曾燕, 罗嘉, 等. 微拟球藻热解及其催化热解制备生物油研究[J]. 燃料化学学报, 2011, 39(9):664-669. YANG W Y, ZENG Y, LUO J, et al. Production of bio-oil by direct and catalytic pyrolysis of Nannochloropsis sp.[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9):664-669.
|
[30] |
ONLY O, BEIS S, KOCKAR O M. Pyrolysis of walnut shell in a well-swept fixed-bed reactor[J]. Energy Sources, 2004, 26(8):771-782.
|
[31] |
LIU S Y, XIE Q L, ZHANG B, et al. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst[J]. Bioresource Technology, 2016, 204:164-170.
|
[32] |
ZHENG Y W, WANG F, YANG X Q, et al. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126:169-179.
|
[33] |
VESES A, AZNAR M, MARTINEZ I, et al. Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts[J]. Bioresource Technology, 2014, 162(6):250-258.
|