CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3428-3443.DOI: 10.11949/0438-1157.20200115
• Reviews and monographs • Previous Articles Next Articles
Qi ZHOU1(),Honglei DING1,2,3(),Detong GUO1,Weiguo PAN1,2,3(),Wei DU1
Received:
2020-02-24
Revised:
2020-04-18
Online:
2020-08-05
Published:
2020-08-05
Contact:
Honglei DING,Weiguo PAN
周柒1(),丁红蕾1,2,3(),郭得通1,潘卫国1,2,3(),杜威1
通讯作者:
丁红蕾,潘卫国
作者简介:
周柒(1996—),男,硕士研究生,基金资助:
CLC Number:
Qi ZHOU, Honglei DING, Detong GUO, Weiguo PAN, Wei DU. Recent advances in catalytic methods of CO2 hydrogenation to clean energy[J]. CIESC Journal, 2020, 71(8): 3428-3443.
周柒, 丁红蕾, 郭得通, 潘卫国, 杜威. CO2催化氢化制清洁能源的研究进展及趋势[J]. 化工学报, 2020, 71(8): 3428-3443.
Add to citation manager EndNote|Ris|BibTeX
催化剂 | 主要产物 | 产率/(μmol/(g·h)) | 选择性/% | 文献 |
---|---|---|---|---|
Pd/Ce-TiO2 | CH4 | 73.5 | — | [ |
TiO2/Ti3C2 | CH4 | 4.4 | — | [ |
SCN-H-Ni-TiO2 | CH3CHO | 11.3 | — | [ |
Cu/plate ZnO/Al2O3 | CH3OH | — | 72.7 | [ |
Cu-g-C3N4-ZnO/Al2O3 | CH3OH | 5730.0 | — | [ |
Cu/ZnGa2O4–ZnO | CH3OH | — | 50.0 | [ |
Cu/ZnO | CH3OH | 127.8 | — | [ |
In2O3/ZrO2 | CH3OH | — | 100.0 | [ |
In2O3-WO3 | CH3OH | 496.0 | — | [ |
In2O3-x(OH)y | CH3OH | 60.0 | 50.0 | [ |
Cu3SnS4 | CH4 | 14.0 | 80.0 | [ |
CdV2O6 | CH4 | 1.0 | — | [ |
CdS/CdV2O6 | CH4 | 2.8 | — | [ |
2%Cd/ZnS:0.2%Cu | HCOOH | 3.2 | 99.0 | [ |
g-C3N4/(Cu/TiO2) | CH3OH | 429.0 | — | [ |
TiO2/rGO | CH4 | 49.0 | — | [ |
HCP-TiO2-FG | CH4 | 27.6 | 87.4 | [ |
Table 1 Comparison on activities of different photocatalysts
催化剂 | 主要产物 | 产率/(μmol/(g·h)) | 选择性/% | 文献 |
---|---|---|---|---|
Pd/Ce-TiO2 | CH4 | 73.5 | — | [ |
TiO2/Ti3C2 | CH4 | 4.4 | — | [ |
SCN-H-Ni-TiO2 | CH3CHO | 11.3 | — | [ |
Cu/plate ZnO/Al2O3 | CH3OH | — | 72.7 | [ |
Cu-g-C3N4-ZnO/Al2O3 | CH3OH | 5730.0 | — | [ |
Cu/ZnGa2O4–ZnO | CH3OH | — | 50.0 | [ |
Cu/ZnO | CH3OH | 127.8 | — | [ |
In2O3/ZrO2 | CH3OH | — | 100.0 | [ |
In2O3-WO3 | CH3OH | 496.0 | — | [ |
In2O3-x(OH)y | CH3OH | 60.0 | 50.0 | [ |
Cu3SnS4 | CH4 | 14.0 | 80.0 | [ |
CdV2O6 | CH4 | 1.0 | — | [ |
CdS/CdV2O6 | CH4 | 2.8 | — | [ |
2%Cd/ZnS:0.2%Cu | HCOOH | 3.2 | 99.0 | [ |
g-C3N4/(Cu/TiO2) | CH3OH | 429.0 | — | [ |
TiO2/rGO | CH4 | 49.0 | — | [ |
HCP-TiO2-FG | CH4 | 27.6 | 87.4 | [ |
催化剂 | 主要 产物 | 产率/ (μmol/(g ·h)) | 选择性/% | 文献 |
---|---|---|---|---|
MoO3-x | CH4 | 2.1 | — | [ |
Ru/Al2O3 | CH4 | — | 99.2 | [ |
Pd/Al2O3 | CH4 | — | 98.6 | [ |
Ni/Al2O3 | CH4 | — | 99.0 | [ |
CoFeAl-LDH-650 | CH4 | — | 60.6 | [ |
Ru@FL-LDHs | CH4 | 277000.0 | 99.3 | [ |
CA-LDO | CH3OH | — | 40.0 | [ |
CZA-LDO | CH3OH | — | 88.0 | [ |
Table 2 Comparison of catalyst activity in photothermal catalysis
催化剂 | 主要 产物 | 产率/ (μmol/(g ·h)) | 选择性/% | 文献 |
---|---|---|---|---|
MoO3-x | CH4 | 2.1 | — | [ |
Ru/Al2O3 | CH4 | — | 99.2 | [ |
Pd/Al2O3 | CH4 | — | 98.6 | [ |
Ni/Al2O3 | CH4 | — | 99.0 | [ |
CoFeAl-LDH-650 | CH4 | — | 60.6 | [ |
Ru@FL-LDHs | CH4 | 277000.0 | 99.3 | [ |
CA-LDO | CH3OH | — | 40.0 | [ |
CZA-LDO | CH3OH | — | 88.0 | [ |
催化剂 | 主要产物 | 法拉第效率(FE)/% | 选择性/% | 过电位/V | 文献 |
---|---|---|---|---|---|
Cu/ZrO2 | CH3OH | — | 28.3 | — | [ |
Cu/TiO2 | CH3OH | — | 19.1 | — | [ |
K/Mn/Fe/NCNT | CO | — | 72.1 | — | [ |
Cu-ZrO2/CNFs | CH3OH | — | 67.0 | — | [ |
5% Ru/NCNF | CH4 | — | 99.0 | — | [ |
2b-AuNP | CO | 71 | — | 0.47 | [ |
SL-NG@Sn | formate | 92 | — | -1.00 | [ |
Table 3 Comparison of activities of different electrocatalysts
催化剂 | 主要产物 | 法拉第效率(FE)/% | 选择性/% | 过电位/V | 文献 |
---|---|---|---|---|---|
Cu/ZrO2 | CH3OH | — | 28.3 | — | [ |
Cu/TiO2 | CH3OH | — | 19.1 | — | [ |
K/Mn/Fe/NCNT | CO | — | 72.1 | — | [ |
Cu-ZrO2/CNFs | CH3OH | — | 67.0 | — | [ |
5% Ru/NCNF | CH4 | — | 99.0 | — | [ |
2b-AuNP | CO | 71 | — | 0.47 | [ |
SL-NG@Sn | formate | 92 | — | -1.00 | [ |
催化剂 | 主要 产物 | 产率 | TON | 文献 |
---|---|---|---|---|
50%-Pd@ICRM | HCOOH | — | 204 | [ |
Pd@ICRM | HCOOH | — | 250 | [ |
C. necator FdsABG | HCOOH | — | 1.9 | [ |
Mn2(bipy)2(CO)6-DBU | HCOOH | 98.0% | 6250 | [ |
D. desulfuricans | HCOOH | 14000.0 μmol/(g·h) | — | [ |
microbial-FeCl3 | HCOOH | 34.6 mg/(L·h) | — | [ |
PANi-ClFDH | HCOOH | 1.4 μmol/(h·cm2) | — | [ |
Fe(PNPH-iPr)(H)(CO)(Br) | HCOOH | 98.0% | 1220 | [ |
Fe(PNPMe-iPr)(H)(CO)(Br) | HCOOH | 98.0% | 9840 | [ |
Fe(PNPNMe-iPr)(H)2(CO) | HCOOH | >99.0% | 10000 | [ |
Mn(PNPNHiPr)(H)(CO)2 | HCOOH | 63.0% | 31600 | [ |
Ni(BF4)2/NP3 | HCOOH | — | 4650710 | [ |
Table 4 Comparison of different enzyme activities in biocatalysis
催化剂 | 主要 产物 | 产率 | TON | 文献 |
---|---|---|---|---|
50%-Pd@ICRM | HCOOH | — | 204 | [ |
Pd@ICRM | HCOOH | — | 250 | [ |
C. necator FdsABG | HCOOH | — | 1.9 | [ |
Mn2(bipy)2(CO)6-DBU | HCOOH | 98.0% | 6250 | [ |
D. desulfuricans | HCOOH | 14000.0 μmol/(g·h) | — | [ |
microbial-FeCl3 | HCOOH | 34.6 mg/(L·h) | — | [ |
PANi-ClFDH | HCOOH | 1.4 μmol/(h·cm2) | — | [ |
Fe(PNPH-iPr)(H)(CO)(Br) | HCOOH | 98.0% | 1220 | [ |
Fe(PNPMe-iPr)(H)(CO)(Br) | HCOOH | 98.0% | 9840 | [ |
Fe(PNPNMe-iPr)(H)2(CO) | HCOOH | >99.0% | 10000 | [ |
Mn(PNPNHiPr)(H)(CO)2 | HCOOH | 63.0% | 31600 | [ |
Ni(BF4)2/NP3 | HCOOH | — | 4650710 | [ |
类型 | 催化剂 | 主要产物 | 选择性/% | 能源效率/% | CO2转化率/% | 文献 |
---|---|---|---|---|---|---|
DBD | Mn/γ-Al2O3 | CO | 77.7 | 10.2 | [ | |
PbTiO3 | CH4 | 75 | — | 15.0 | [ | |
ZrO2 pellets | CO | 95 | 7.0 | 52.1 | [ | |
Ni/Al2O3-60% Ar | CH4 | 7.6 | 2.2 | 56.1 | [ | |
Pd/ZnO | CH4; CO | — | — | 32.5 | [ | |
GA | N2:10%→95% | CO | — | 12.0 | 12.7 | [ |
MW | NiO/TiO2(Ar-P) | CO | — | 18.0 | 43.0 | [ |
(20000 Pa) | CO | — | 23.0 | 38.0 | [ | |
(H2∶CO2 = 1) | CO | 100 | — | 60.0 | [ | |
(H2∶CO2 = 3) | CO | 6 | 80 | [ | ||
RF | pure CO2 | CO | — | — | 66.0 | [ |
25% H2 | CO | — | — | 21.6 | [ | |
91% H2 | CO | — | — | 65.2 | [ |
Table 5 Comparison of different catalyst activities in plasma catalysis
类型 | 催化剂 | 主要产物 | 选择性/% | 能源效率/% | CO2转化率/% | 文献 |
---|---|---|---|---|---|---|
DBD | Mn/γ-Al2O3 | CO | 77.7 | 10.2 | [ | |
PbTiO3 | CH4 | 75 | — | 15.0 | [ | |
ZrO2 pellets | CO | 95 | 7.0 | 52.1 | [ | |
Ni/Al2O3-60% Ar | CH4 | 7.6 | 2.2 | 56.1 | [ | |
Pd/ZnO | CH4; CO | — | — | 32.5 | [ | |
GA | N2:10%→95% | CO | — | 12.0 | 12.7 | [ |
MW | NiO/TiO2(Ar-P) | CO | — | 18.0 | 43.0 | [ |
(20000 Pa) | CO | — | 23.0 | 38.0 | [ | |
(H2∶CO2 = 1) | CO | 100 | — | 60.0 | [ | |
(H2∶CO2 = 3) | CO | 6 | 80 | [ | ||
RF | pure CO2 | CO | — | — | 66.0 | [ |
25% H2 | CO | — | — | 21.6 | [ | |
91% H2 | CO | — | — | 65.2 | [ |
1 | Li S, Guo L, Ishihara T. Hydrogenation of CO2 to methanol over Cu/AlCeO catalyst[J]. Catalysis Today, 2020, 339: 352-361. |
2 | Sgouridis S, Carbajales-Dale M, Csala D, et al. Comparative net energy analysis of renewable electricity and carbon capture and storage [J]. Nat. Energy, 2019, 4(6): 456-465. |
3 | Mac Dowell N, Fennell P S, Shah N, et al. The role of CO2 capture and utilization in mitigating climate change [J]. Nat. Clim. Change, 2017, 7(4): 243-249. |
4 | Wang L, Yi Y, Guo H, et al. Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2 [J]. ACS Catalysis, 2017, 8(1): 90-100. |
5 | Snoeckx R, Bogaerts A. Plasma technology — a novel solution for CO2 conversion? [J]. Chem. Soc. Rev., 2017, 46(19): 5805-5863. |
6 | Rahmatmand B, Rahimpour M R, Keshavarz P. Introducing a novel process to enhance the syngas conversion to methanol over Cu/ZnO/Al2O3 catalyst[J]. Fuel Processing Technology, 2019, 193: 159-179. |
7 | Sperling D. Beyond oil and gas: the methanol economy [J]. Energ. J., 2007, 28(1): 178-189. |
8 | Low J, Cheng B, Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review[J]. Applied Surface Science, 2017, 392: 658-686. |
9 | 曹晨熙, 陈天元, 丁晓旭, 等. 负载型铟基催化剂二氧化碳加氢动力学研究[J]. 化工学报, 2019, 70(10): 3985-3993. |
Cao C X, Chen T Y, Ding X X, et al. Kinetics study on supported indium-based catalysts in carbon dioxide hydrogenation [J]. CIESC Journal, 2019, 70(10): 3985-3993. | |
10 | Li N X, Zou X Y, Liu M, et al. Enhanced visible light photocatalytic hydrogenation of CO2 into methane over a Pd/Ce-TiO2 nanocomposition [J]. The Journal of Physical Chemistry C, 2017, 121(46): 25795-25804. |
11 | Yan Y B, Yu Y L, Huang S L, et al. Adjustment and matching of energy band of TiO2-based photocatalysts by metal ions (Pd, Cu, Mn) for photoreduction of CO2 into CH4 [J]. J. Phys. Chem. C, 2017, 121(2): 1089-1098. |
12 | Tahir M, Tahir B. Dynamic photocatalytic reduction of CO2 to CO in a honeycomb monolith reactor loaded with Cu and N doped TiO2 nanocatalysts [J]. Applied Surface Science, 2016, 377: 244-252 |
13 | Butburee T, Sun Z, Centeno A, et al. Improved CO2 photocatalytic reduction using a novel 3-component heterojunction[J]. Nano Energy, 2019, 62: 426-433. |
14 | Low J X, Zhang L Y, Tong T, et al. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity [J]. Journal of Catalysis, 2018, 361: 255-266. |
15 | Xu Y J, Wang S, Yang J, et al. In-situ grown nanocrystal TiO2 on 2D Ti3C2 nanosheets for artificial photosynthesis of chemical fuels [J]. Nano Energy, 2018, 51: 442-450. |
16 | Zhang X F, Liu Y, Dong S L, et al. One-step hydrothermal synthesis of a TiO2-Ti3C2Tx nanocomposite with small sized TiO2 nanoparticles[J]. Ceramics International, 2017, 43(14): 11065-11070. |
17 | Xu F Y, Zhang J J, Zhu B C, et al. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction [J]. Appl. Catal. B-Environ., 2018, 230: 194-202. |
18 | Rambabu Y, Kumar U, Singhal N, et al. Photocatalytic reduction of carbon dioxide using graphene oxide wrapped TiO2 nanotubes [J]. Applied Surface Science, 2019, 485: 48-55. |
19 | Fu F Y, Shown I, Li C S, et al. KSCN-induced interfacial dipole in black TiO2 for enhanced photocatalytic CO2 reduction [J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25186-25194. |
20 | Ye J, He J H, Wang S, et al. Nickel-loaded black TiO2 with inverse opal structure for photocatalytic reduction of CO2 under visible light [J]. Separation and Purification Technology, 2019, 220: 8-15. |
21 | Zhao J, Li Y X, Zhu Y Q, et al. Enhanced CO2 photoreduction activity of black TiO2-coated Cu nanoparticles under visible light irradiation: role of metallic Cu [J]. Appl. Catal. A-Gen., 2016, 510: 34-41. |
22 | Liao F, Huang Y, Ge J, et al. Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials interface in selective hydrogenation of CO2 to CH3OH [J]. Angewandte Chemie, 2011, 50(9): 2162-2175. |
23 | Deng K, Hu B, Lu Q, et al. Cu/g-C3N4 modified ZnO/Al2O3 catalyst: methanol yield improvement of CO2 hydrogenation [J]. Catalysis Communications, 2017, 100: 81-84. |
24 | Li M M J, Zeng Z Y, Liao F L, et al. Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts [J]. Journal of Catalysis, 2016, 343: 157-167. |
25 | Wang Z J, Song H, Pang H, et al. Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts [J]. Appl. Catal. B-Environ., 2019, 250: 10-16. |
26 | Martin O, Martin A J, Mandelli C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation [J]. Angewandte Chemie, 2016, 55(21): 6261-6265. |
27 | Gondal M A, Dastageer M A, Oloore L E, et al. Laser induced selective photo-catalytic reduction of CO2 into methanol using In2O3-WO3 nano-composite [J]. J. Photoch. Photobio. A, 2017, 343: 40-50. |
28 | Guan J R, Wang H Q, Lu J Z, et al. Enhanced photocatalytic reduction of CO2 by fabricating In2O3/CeO2/HATP hybrid multi-junction photocatalyst [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99: 93-103. |
29 | Pan Y X, You Y, Xin S, et al. Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts [J]. Journal of the American Chemical Society, 2017, 139(11): 4123-4129. |
30 | Wang L, Ghoussoub M, Wang H, et al. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure [J]. Joule, 2018, 2(7): 1369-1381. |
31 | Sharma N, Das T, Kumar S, et al. Photocatalytic activation and reduction of CO2 to CH4 over single phase nano Cu3SnS4: a combined experimental and theoretical study [J]. ACS Applied Energy Materials, 2019, 2(8): 5677-5685. |
32 | Li P, Hou C C, Zhang X H, et al. Ethylenediamine-functionalized CdS/tetra(4-carboxyphenyl) porphyrin iron (III) chloride hybrid system for enhanced CO2 photoreduction [J]. Applied Surface Science, 2018, 459: 292-299. |
33 | Kandy M M, Gaikar V G. Enhanced photocatalytic reduction of CO2 using CdS/Mn2O3 nanocomposite photocatalysts on porous anodic alumina support with solar concentrators [J]. Renew. Energ., 2019, 139: 915-923. |
34 | Jin J, Yu J G, Guo D P, et al. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity [J]. Small, 2015, 11(39): 5262-5271. |
35 | Wei Z H, Wang Y F, Li Y Y, et al. Enhanced photocatalytic CO2 reduction activity of Z-scheme CdS/BiVO4 nanocomposite with thinner BiVO4 nanosheets [J]. Journal of CO2 Utilization, 2018, 28: 15-25. |
36 | Li Y Y, Wei Z H, Fan J B, et al. Photocatalytic CO2 reduction activity of Z-scheme CdS/CdWO4 catalysts constructed by surface charge directed selective deposition of CdS [J]. Applied Surface Science, 2019, 483: 442-452. |
37 | Ijaz S, Ehsan M F, Ashiq M N, et al. Flower-like CdS/CdV2O6 composite for visible-light photoconversion of CO2 into CH4 [J]. Materials & Design, 2016, 107: 178-186. |
38 | Baran T, Wojtyla S, Dibenedetto A, et al. Zinc sulfide functionalized with ruthenium nanoparticles for photocatalytic reduction of CO2 [J]. Appl. Catal. B-Environ., 2015, 178: 170-176. |
39 | Meng X G, Zuo G F, Zong P X, et al. A rapidly room-temperature-synthesized Cd/ZnS: Cu nanocrystal photocatalyst for highly efficient solar-light-powered CO2 reduction [J]. Appl. Catal. B-Environ., 2018, 237: 68-73. |
40 | Primo A, He J B, Jurca B, et al. CO2 methanation catalyzed by oriented MoS2 nanoplatelets supported on few layers graphene [J]. Appl. Catal. B-Environ., 2019, 245: 351-359. |
41 | Akple M S, Low J, Wageh S, et al. Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures [J]. Applied Surface Science, 2015, 358: 196-203. |
42 | Tian N, Zhang Y H, Li X W, et al. Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution [J]. Nano Energy, 2017, 38: 72-81. |
43 | Mondelli C, Puertolas B, Ackermann M, et al. Enhanced base-free formic acid production from CO2 on Pd/g-C3N4 by tuning of the carrier defects [J]. ChemSusChem, 2018, 11(17): 2859-2869. |
44 | Adekoya D O, Tahir M, Amin N A S. g-C3N4/(Cu/TiO2) nanocomposite for enhanced photoreduction of CO2 to CH3OH and HCOOH under UV/visible light [J]. Journal of CO2 Utilization, 2017, 18: 261-274. |
45 | Wang Y L, Tian Y, Yan L K, et al. DFT study on sulfur-doped g-C3N4 nanosheets as a photocatalyst for CO2 reduction reaction [J]. J. Phys. Chem. C, 2018, 122(14): 7712-7719. |
46 | Wang F, Ye Y H, Cao Y H, et al. The favorable surface properties of heptazine based g-C3N4 (001) in promoting the catalytic performance towards CO2 conversion [J]. Applied Surface Science, 2019, 481: 604-610. |
47 | Low J, Yu J, Ho W. Graphene-based photocatalysts for CO2 reduction to solar fuel [J]. The Journal of Physical Chemistry Letters, 2015, 6(21): 4244-4251. |
48 | Ahmed G, Raziq F, Hanif M, et al. Oxygen-cluster-modified anatase with graphene leads to efficient and recyclable photo-catalytic conversion of CO2 to CH4 supported by the positron annihilation study[J]. Scientific Reports, 2019, 9(1): 1-8. |
49 | Wang S L, Xu M, Peng T Y, et al. Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion [J]. Nat. Commun, 2019, 10(1): 676. |
50 | Hou S L, Dong J, Zhao B. Formation of C—X bonds in CO2 chemical fixation catalyzed by metal-organic frameworks[J]. Advanced Materials, 2020, 32(3): 1806163. |
51 | Ye J Y, Johnson J K. Design of Lewis pair-functionalized metal organic frameworks for CO2 hydrogenation[J]. ACS Catalysis, 2015, 5(5): 2921-2928. |
52 | Jia J, brien P G O, He L, et al. Visible and near-infrared photothermal catalyzed hydrogenation of gaseous CO2 over nanostructured Pd@Nb2O5 [J]. Advanced Science, 2016, 3(10): 1600189. |
53 | Chen G, Gao R, Zhao Y, et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons[J]. Advanced Materials, 2018, 30(3): 1704663. |
54 | Li J, Ye Y H, Ye L Q, et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3-x [J]. J. Mater. Chem. A, 2019, 7(6): 2821-2830. |
55 | Wang L, Liu X X, Dang Y L, et al. Enhanced solar induced photo-thermal synergistic catalytic CO2 conversion by photothermal material decorated TiO2 [J]. Solid. State. Sci., 2019, 89: 67-73. |
56 | Meng X, Wang T, Liu L, et al. Photothermal conversion of CO2 into CH4 with H2 over Group VIII nanocatalysts: an alternative approach for solar fuel production [J]. Angewandte Chemie, 2014, 53(43): 11478-11482. |
57 | Ren J, Ouyang S, Xu H, et al. Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system[J]. Advanced Energy Materials, 2017, 7(5): 1601657. |
58 | Zhao F G, Fan L L, Xu K J, et al. Hierarchical sheet-like Cu/Zn/Al nanocatalysts derived from LDH/MOF composites for CO2 hydrogenation to methanol[J]. Journal of CO2 Utilization, 2019, 33: 222-232. |
59 | Zhu D D, Liu J L, Qiao S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016, 28(18): 3423-3452. |
60 |
Hjorth I, Nord M, Nning M R, et al. Electrochemical reduction of CO2 to synthesis gas on CNT supported CuxZn1-xO catalysts[J]. Catalysis Today, 2019, DOI: 10.1016/j.cattod.2019.02.045.
DOI URL |
61 | Nielsen D U, Hu X M, Daasbjerg K, et al. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals[J]. Nature Catalysis, 2018, 1(4): 244-254. |
62 | Zhu S, Jiang B, Cai W B, et al. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces[J]. Journal of the American Chemical Society, 2017, 139(44): 15664-15667. |
63 | Luo W, Nie X, Janik M J, et al. Facet dependence of CO2 reduction paths on Cu electrodes [J]. ACS Catalysis, 2015, 6(1): 219-229. |
64 | Perez-Gallent E, Figueiredo M C, Calle-Vallejo F, et al. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes [J]. Angewandte Chemie, 2017, 56(13): 3621-3624. |
65 | Jiao Y, Zheng Y, Chen P, et al. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol[J]. Journal of the American Chemical Society, 2017, 139(49): 18093-18100. |
66 | Ma S, Sadakiyo M, Heima M, et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns [J]. Journal of the American Chemical Society, 2017, 139(1): 47-50. |
67 | Kattel S, Yan B, Yang Y, et al. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper [J]. Journal of the American Chemical Society, 2016, 138(38): 12440-12450. |
68 | Ning H, Wang X, Wang W, et al. Cubic Cu2O on nitrogen-doped carbon shells for electrocatalytic CO2 reduction to C2H4 [J]. Carbon, 2019, 146: 218-223. |
69 | Nolan M. Adsorption of CO2 on heterostructures of Bi2O3 nanocluster-modified TiO2 and the role of reduction in promoting CO2 activation [J]. ACS Omega., 2018, 3(10): 13117-13128. |
70 | Zhai L N, Cui C N, Zhao Y T, et al. Titania-modified silver electrocatalyst for selective CO2 reduction to CH3OH and CH4 from DFT study [J]. J. Phys. Chem. C, 2017, 121(30): 16275-16282. |
71 | Yang X F, Kattel S, Senanayake S D, et al. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO2 interface [J]. Journal of the American Chemical Society, 2015, 137(32): 10104-10107. |
72 | Kangvansura P, Chew L M, Kongmark C, et al. Effects of potassium and manganese promoters on nitrogen-doped carbon nanotube-supported iron catalysts for CO2 hydrogenation [J]. Engineering, 2017, 3(3): 385-392. |
73 | Castelo-Quibén J, Bailón-García E, Pérez-Fernández F J, et al. Mesoporous carbon nanospheres with improved conductivity for electro-catalytic reduction of O2 and CO2[J]. Carbon, 2019, 155: 88-99. |
74 | Wang W, Chu W, Wang N, et al. Mesoporous nickel catalyst supported on multi-walled carbon nanotubes for carbon dioxide methanation [J]. International Journal of Hydrogen Energy, 2016, 41(2): 967-975. |
75 | Li J, Zhou Y, Xiao X, et al. Regulation of Ni-CNT interaction on Mn-promoted nickel nanocatalysts supported on oxygenated CNTs for CO2 selective hydrogenation [J]. ACS Applied Materials & Interfaces, 2018, 10(48): 41224-41236. |
76 | Nguyen L T M, Park H, Banu M, et al. Catalytic CO2 hydrogenation to formic acid over carbon nanotube-graphene supported PdNi alloy catalysts [J]. RSC Adv., 2015, 5(128): 105560. |
77 | Din I U, Shaharun M S, Naeem A, et al. Carbon nanofiber-based copper/zirconia catalyst for hydrogenation of CO2 to methanol [J]. Journal of CO2 Utilization, 2017, 21: 145-155. |
78 | Roldan L, Marco Y, Garcia-Bordeje E. Origin of the excellent performance of Ru on nitrogen-doped carbon nanofibers for CO2 hydrogenation to CH4 [J]. ChemSusChem., 2017, 10(6): 1139-1144. |
79 | Castelo-Quibén J, Elmouwahidi A, Maldonado-Hódar F, et al. Metal-carbon-CNF composites obtained by catalytic pyrolysis of urban plastic residues as electro-catalysts for the reduction of CO2 [J]. Catalysts, 2018, 8(5): 198-209. |
80 | Díaz J A, Romero A, García-Minguillán A M, et al. Carbon nanofibers and nanospheres-supported bimetallic (Co and Fe) catalysts for the Fischer–Tropsch synthesis [J]. Fuel Processing Technology, 2015, 138: 455-462. |
81 | Zhang C H, Yang S Z, Wu J J, et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene [J]. Advanced Energy Materials, 2018, 8(19): 1703487. |
82 | Rogers C, Perkins W S, Veber G, et al. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes [J]. Journal of the American Chemical Society, 2017, 139(11): 4052-4061. |
83 | Huang J, Guo X, Wei Y, et al. A renewable, flexible and robust single layer nitrogen-doped graphene coating Sn foil for boosting formate production from electrocatalytic CO2 reduction [J]. Journal of CO2 Utilization, 2019, 33: 166-170. |
84 | Han P, Yu X, Yuan D, et al. Defective graphene for electrocatalytic CO2 reduction [J]. Journal of Colloid and Interface Science, 2019, 534: 332-357. |
85 | Wu J J, Liu M J, Sharma P P, et al. Incorporation of nitrogen defects for efficient reduction of CO2via two-electron pathway on three-dimensional graphene foam [J]. Nano Letters, 2016, 16(1): 466-470. |
86 | Bhatia S K, Bhatia R K, Jeon J M, et al. Carbon dioxide capture and bioenergy production using biological system—a review [J]. Renew. Sust. Energ. Rev., 2019, 110: 143-158. |
87 | Wang Y Z, Li M F, Zhao Z P, et al. Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions [J]. J. Mol. Catal. B-Enzym., 2015, 116: 89-94. |
88 | Lee L C, Xing X, Zhao Y. Environmental engineering of Pd nanoparticle catalysts for catalytic hydrogenation of CO2 and bicarbonate [J]. ACS Applied Materials & Interfaces, 2017, 9(44): 38436-38344. |
89 | Nielsen C F, Lange L, Meyer A S. Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization [J]. Biotechnology Advances, 2019, 37(7): 107408. |
90 | Yu X. Conversion of carbon dioxide to formate by a formate dehydrogenase from Cupriavidus necator[D/OL]. UC Riverside, 2018. https: //escholarship.org/uc/item/1vn4h6xj. |
91 | Shiekh B A, Kaur D, Kumar S. Bio-mimetic self-assembled computationally designed catalysts of Mo and W for hydrogenation of CO2/dehydrogenation of HCOOH inspired by the active site of formate dehydrogenase [J]. Phys. Chem. Chem. Phys., 2019, 21(38): 21370-21380. |
92 | Piazzetta P, Marino T, Russo N, et al. Direct hydrogenation of carbon dioxide by an artificial reductase obtained by substituting rhodium for zinc in the carbonic anhydrase catalytic center. A mechanistic study [J]. ACS Catalysis, 2015, 5(9): 5397-5409. |
93 | Chen X, Yang X. Bioinspired design and computational prediction of iron complexes with pendant amines for the production of methanol from CO2 and H2 [J]. The Journal of Physical Chemistry Letters, 2016, 7(6): 1035-1041. |
94 | Dubey A, Nencini L, Fayzullin R R, et al. Bio-inspired Mn(I) complexes for the hydrogenation of CO2 to formate and formamide [J]. ACS Catalysis, 2017, 7(6): 3864-3868. |
95 | Yang L, Wang H, Zhang N, et al. The reduction of carbon dioxide in iron biocatalyst catalytic hydrogenation reaction: a theoretical study [J]. Dalton Transactions, 2013, 42(31): 11186-11193. |
96 | Mourato C, Martins M, Da Silva S M, et al. A continuous system for biocatalytic hydrogenation of CO2 to formate [J]. Bioresource Technology, 2017, 235: 149-156. |
97 | Blanchet E, Vahlas Z, Etcheverry L, et al. Coupled iron-microbial catalysis for CO2 hydrogenation with multispecies microbial communities [J]. Chemical Engineering Journal, 2018, 346: 307-316. |
98 | Roger M, Brown F, Gabrielli W, et al. Efficient hydrogen- dependent carbon dioxide reduction by Escherichia coli [J]. Curr. Biol., 2018, 28(1): 140-145. |
99 | Luo J, Meyer A S, Mateiu R V, et al. Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol [J]. New Biotechnology, 2015, 32(3): 319-327. |
100 | Schlager S, Fuchsbauer A, Haberbauer M, et al. Carbon dioxide conversion to synthetic fuels using biocatalytic electrodes [J]. J. Mater. Chem. A, 2017, 5(6): 2429-2443. |
101 | Kuk S K, Gopinath K, Singh R K, et al. NADH-free electroenzymatic reduction of CO2 by conductive hydrogel-conjugated formate dehydrogenase [J]. ACS Catalysis, 2019, 9(6): 5584-5589. |
102 | Jang J, Jeon B W, Kim Y H. Bioelectrochemical conversion of CO2 to value added product formate using engineered Methylobacterium extorquens[J]. Scientific Reports, 2018, 8(1): 1-7. |
103 | Bertini F, Gorgas N, Stöger B, et al. Efficient and mild carbon dioxide hydrogenation to formate catalyzed by Fe (II) hydrido carbonyl complexes bearing 2, 6-(diaminopyridyl) diphosphine pincer ligands[J]. ACS Catalysis, 2016, 6(5): 2889-2893. |
104 | Bertini F, Glatz M, Gorgas N, et al. Carbon dioxide hydrogenation catalysed by well-defined Mn (I) PNP pincer hydride complexes[J]. Chemical Science, 2017, 8(7): 5024-5029. |
105 | Schieweck B G, Westhues N F, Klankermayer J. A highly active non-precious transition metal catalyst for the hydrogenation of carbon dioxide to formates[J]. Chemical Science, 2019, 10(26): 6519-6523. |
106 | 刘昌俊, 郭秋婷, 叶静云, 等. 二氧化碳转化催化剂研究进展及相关问题思考[J]. 化工学报, 2016, 67(1): 6-13. |
Liu C J, Guo Q T, Ye J Y, et al. Perspective on catalyst investigation for CO2 conversion and related issues[J]. CIESC Journal, 2016, 67(1): 6-13. | |
107 | Zhao T, Ullah N, Hui Y, et al. Review of plasma-assisted reactions and potential applications for modification of metal-organic frameworks [J]. Frontiers of Chemical Science and Engineering, 2019, 13(3): 444-457. |
108 | 郭得通, 丁红蕾, 潘卫国, 等. CO2催化转化的研究现状及趋势[J]. 中国电机工程学报, 2019, 39(24): 7242-7252+7497. |
Guo D T, Ding H L, Pan W G, et al. Recent advances in catalyzed conversion and utilization of CO2 [J]. Proceedings of the CSEE, 2019, 39(24): 7242-7252+7497. | |
109 | Zeng Y, Tu X. Plasma-catalytic CO2 hydrogenation at low temperatures[J]. IEEE Transactions on Plasma Science, 2016, 44(4): 405-411. |
110 | Chen H, Mu Y, Shao Y, et al. Nonthermal plasma (NTP) activated metal–organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation[J]. AIChE Journal, 2020, 66(4): e16853. |
111 | Parastaev A, Hoeben W F L M, van Heesch B E J M, et al. Temperature-programmed plasma surface reaction: an approach to determine plasma-catalytic performance [J]. Applied Catalysis B: Environmental, 2018, 239: 168-177. |
112 | De Bie C, van Dijk J, Bogaerts A. CO2 hydrogenation in a dielectric barrier discharge plasma revealed [J]. The Journal of Physical Chemistry C, 2016, 120(44): 25210-25224. |
113 | Aerts R, Somers W, Bogaerts A. Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study [J]. ChemSusChem, 2015, 8(4): 702-716. |
114 | Zhou A, Chen D, Ma C, et al. DBD plasma-ZrO2 catalytic decomposition of CO2 at low temperatures [J]. Catalysts, 2018, 8(7): 256-267. |
115 | Amouroux J, Cavadias S. Electrocatalytic reduction of carbon dioxide under plasma DBD process[J]. Journal of Physics D: Applied Physics, 2017, 50(46): 465501. |
116 | Ray D, Saha R. DBD plasma assisted CO2 decomposition: influence of diluent gases[J]. Catalysts, 2017, 7(9): 244-255. |
117 | Zeng Y, Tu X. Plasma-catalytic hydrogenation of CO2 for the cogeneration of CO and CH4 in a dielectric barrier discharge reactor: effect of argon addition[J]. Journal of Physics D: Applied Physics, 2017, 50(18): 184004. |
118 | Li J, Sun Y, Wang B, et al. Effect of plasma on catalytic conversion of CO2 with hydrogen over Pd/ZnO in a dielectric barrier discharge reactor [J]. Journal of Physics D: Applied Physics, 2019, 52(24): 244001. |
119 | Zhou R, Rui N, Fan Z, et al. Effect of the structure of Ni/TiO2 catalyst on CO2 methanation [J]. International Journal of Hydrogen Energy, 2016, 41(47): 22017-22025. |
120 | Heijkers S, Bogaerts A. CO2 conversion in a gliding arc plasmatron: elucidating the chemistry through kinetic modeling [J]. The Journal of Physical Chemistry C, 2017, 121(41): 22644. |
121 | Zhang H, Li L, Li X D, et al. Warm plasma activation of CO2 in a rotating gliding arc discharge reactor [J]. Journal of CO2 Utilization, 2018, 27: 472-479. |
122 | Li L, Zhang H, Li X D, et al. Plasma-assisted CO2 conversion in a gliding arc discharge: improving performance by optimizing the reactor design [J]. Journal of CO2 Utilization, 2019, 29: 296-303. |
123 | Liu J B, Li X S, Liu J L, et al. Insight into gliding arc (GA) plasma reduction of CO2 with H2: GA characteristics and reaction mechanism[J]. Journal of Physics D: Applied Physics, 2019, 52(28): 284001. |
124 | Ananthanarasimhan J, Rao L, Shivapuji A M, et al. Characterization and applications of non-magnetic rotating gliding arc reactors—a brief review[J]. Frontiers in Advanced Materials Research, 2019, 1(1): 31-38. |
125 | Chen G, Britun N, Godfroid T, et al. An overview of CO2 conversion in a microwave discharge: the role of plasma-catalysis [J]. Journal of Physics D: Applied Physics, 2017, 50(8): 084001. |
126 | Chen G, Britun N, Godfroid T, et al. Role of plasma catalysis in the microwave plasma‐assisted conversion of CO2 [M]//Green Chemical Processing and Synthesis. Intech, 2017. |
127 | Belov I, VermeIiren V, Paulussen S, et al. Carbon dioxide dissociation in a microwave plasma reactor operating in a wide pressure range and different gas inlet configurations [J]. Journal of CO2 Utilization, 2018, 24: 386-397. |
128 | De La Fuente J F, Moreno S H, Stankiewicz A I, et al. Reduction of CO2 with hydrogen in a non-equilibrium microwave plasma reactor [J]. International Journal of Hydrogen Energy, 2016, 41(46): 21067-21077. |
129 | De La Fuente J F, Moreno S H, Stankiewicz A I, et al. On the improvement of chemical conversion in a surface-wave microwave plasma reactor for CO2 reduction with hydrogen (the reverse water-gas shift reaction) [J]. International Journal of Hydrogen Energy, 2017, 42(18): 12943-12955. |
130 | Yang R L, Zhang D Y, Zhu K W, et al. In situ study of the conversion reaction of CO2 and CO2-H2 mixtures in radio frequency discharge plasma[J]. Acta Physico-Chimica Sinica, 2019, 35(3): 292-298. |
131 | Huang Q, Zhang D, Wang D, et al. Carbon dioxide dissociation in non-thermal radiofrequency and microwave plasma [J]. Journal of Physics D: Applied Physics, 2017, 50(29): 294001. |
[1] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[2] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[3] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[7] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[8] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[9] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[10] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[11] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[12] | Can YANG, Xueqi SUN, Minghua SHANG, Jian ZHANG, Xiangping ZHANG, Shaojuan ZENG. Research status and prospect of CO2 absorption and separation by phase-change ionic liquid systems [J]. CIESC Journal, 2023, 74(4): 1419-1432. |
[13] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[14] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[15] | Mengxin LIANG, Yan GUO, Shidong WANG, Hongwei ZHANG, Pei YUAN, Xiaojun BAO. Study on preparation of Pd catalyst supported on carbon nitride for the selective hydrogenation of SBS [J]. CIESC Journal, 2023, 74(2): 766-775. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||