CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 4006-4030.DOI: 10.11949/0438-1157.20200481
• Reviews and monographs • Previous Articles Next Articles
Jiahuan MA(),Weiwei YANG,Yu BAI(),Kening SUN
Received:
2020-05-06
Revised:
2020-06-20
Online:
2020-09-05
Published:
2020-09-05
Contact:
Yu BAI
通讯作者:
白羽
作者简介:
马佳欢(1995—),女,硕士研究生,基金资助:
CLC Number:
Jiahuan MA, Weiwei YANG, Yu BAI, Kening SUN. Research progress of two-dimensional metal organic frameworks and their derivatives for electrocatalytic water splitting[J]. CIESC Journal, 2020, 71(9): 4006-4030.
马佳欢, 杨微微, 白羽, 孙克宁. 二维金属有机框架及其衍生物用于电催化分解水的研究进展[J]. 化工学报, 2020, 71(9): 4006-4030.
Add to citation manager EndNote|Ris|BibTeX
70 | Chen B H, He X B, Yin F X, et al. MO-Co@N-doped carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-air battery[J]. Adv. Funct. Mater., 2017, 27(37): 170059795. |
71 | Zhang W, Wang Y, Zheng H, et al. Embedding ultrafine metal oxide nanoparticles in monolayered metal-organic framework nanosheets enables efficient electrocatalytic oxygen evolution[J]. ACS Nano, 2020, 14(2): 1971-1981. |
72 | Zhou J, Dou Y B, Zhou A W, et al. Layered metal-organic framework-derived metal oxide/carbon nanosheet arrays for catalyzing the oxygen evolution reaction[J]. ACS Energy Lett., 2018, 3(7): 1655-1661. |
73 | Guan C, Sumboja A, Wu H, et al. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries[J]. Adv. Mater., 2017, 29(44): 1704117. |
74 | Lin Y, Chen G, Wan H, et al. 2D free-standing nitrogen-doped Ni-Ni3S2@ carbon nanoplates derived from metal-organic frameworks for enhanced oxygen evolution reaction[J]. Small, 2019, 15(18): 1900348. |
75 | He P, Xie Y, Dou Y, et al. Partial sulfurization of a 2D MOF array for highly efficient oxygen evolution reaction[J]. ACS Appl. Mater. Inter., 2019, 11(44): 41595-41601. |
76 | Zhao J Y, Wang R, Wang S, et al. Metal-organic framework-derived Co9S8 embedded in N, O and S-tridoped carbon nanomaterials as an efficient oxygen bifunctional electrocatalyst[J]. J. Mater. Chem. A, 2019, 7(13): 7389-7395. |
77 | Wang H, Li Y, Li Y, et al. MOFs-derived hybrid nanosheet arrays of nitrogen-rich CoS2 and nitrogen-doped carbon for efficient hydrogen evolution in both alkaline and acidic media[J]. Int. J. Hydrogen Energy, 2018, 43(52): 23319-23326. |
78 | Chen W, Zhang Y, Chen G, et al. Hierarchical porous bimetal-sulfide bi-functional nanocatalysts for hydrogen production by overall water electrolysis[J]. J. Colloid Inter. Sci., 2020, 560: 426-435. |
79 | Yang D S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. J. Am. Chem. Soc., 2012, 134(39): 16127-16130. |
80 | Zhai M, Wang F, Du H. Transition-metal phosphide-carbon nanosheet composites derived from two-dimensional metal-organic frameworks for highly efficient electrocatalytic water-splitting[J]. ACS Appl. Mater. Inter., 2017, 9(46): 40171-40179. |
81 | Zhu W, Zhang W, Li Y, et al. Energy-efficient 1.67 V single- and 0.90 V dual-electrolyte based overall water-electrolysis devices enabled by a ZIF-L derived acid-base bifunctional cobalt phosphide nanoarray[J]. J. Mater. Chem. A, 2018, 6(47): 24277-24284. |
1 | Tiwari J, Sultan S, Myung C, et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity[J]. Nat. Energy, 2018, 3(9): 773-782. |
2 | Sultan S, Tiwari J N, Singh A N, et al. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting[J]. Adv. Energy Mater., 2019, 9(22): 1900624. |
82 | Jiang M, Li J, Cai X, et al. Ultrafine bimetallic phosphide nanoparticles embedded in carbon nanosheets: two-dimensional metal–organic framework-derived non-noble electrocatalysts for the highly efficient oxygen evolution reaction[J]. Nanoscale, 2018, 10(42): 19774-19780. |
83 | Zhang L, Wang X, Li A, et al. Rational construction of macroporous CoFeP triangular plate arrays from bimetal-organic frameworks as high-performance overall water-splitting catalysts[J]. J. Mater. Chem. A, 2019, 7(29): 17529-17535. |
3 | Conway B E, Tilak B V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H[J]. Electrochim. Acta, 2002, 47(22): 3571-3594. |
4 | Morales-Guio C G, Stern L A, Hu X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chem. Soc. Rev., 2014, 43(18): 6555-6569. |
5 | Strmcnik D, Lopes P P, Genorio B, et al. Design principles for hydrogen evolution reaction catalyst materials[J]. Nano Energy, 2016, 29: 29-36. |
6 | Yang L, Xu H, Liu H, et al. Active site identification and evaluation criteria of in situ grown cote and nite nanoarrays for hydrogen evolution and oxygen evolution reactions[J]. Small, 2019, 3(5): 1900113. |
7 | Zheng Y, Jiao Y, Vasileff A, et al. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts[J]. Angew. Chem. Int. Ed., 2018, 57(26): 7568-7579. |
8 | Chen G, Wang T, Zhang J, et al. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites[J]. Adv. Mater., 2018, 30(10): 1706279. |
9 | Dau H, Limberg C, Reier T, et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis[J]. Chemcatchem, 2010, 2(7): 724-761. |
84 | Li G, Zhang X, Zhang H, et al. Bottom-up MOF-intermediated synthesis of 3D hierarchical flower-like cobalt-based homobimetallic phophide composed of ultrathin nanosheets for highly efficient oxygen evolution reaction[J]. Appl. Catal. B: Environ., 2019, 249: 147-154. |
85 | Guan C, Xiao W, Wu H, et al. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting[J]. Nano Energy, 2018, 48: 73-80. |
86 | Zhou Q, Wang J, Guo F, et al. Self-supported bimetallic phosphide-carbon nanostructures derived from metal-organic frameworks as bifunctional catalysts for highly efficient water splitting[J]. Electrochim. Acta, 2019, 318: 244-251. |
87 | Xu Y, Tu W G, Zhang B W, et al. Nickel nanoparticles encapsulated in few-layer nitrogen-doped graphene derived from metal-organic frameworks as efficient bifunctional electrocatalysts for overall water splitting[J]. Adv. Mater., 2017, 29(11): 1605957. |
10 | Rosen J, Hutchings G S, Jiao F. Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst[J]. J. Am. Chem. Soc., 2013, 135(11): 4516-4521. |
11 | Rossmeisl J, Qu Z W, Zhu H, et al. Electrolysis of water on oxide surfaces[J]. J. Electroanal. Chem., 2007, 607(1): 83-89. |
12 | Trasatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine[J]. Electrochim. Acta, 1984, 29(11): 1503-1512. |
13 | Yaghi O M, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706. |
14 | Wu H B, Lou X WDavid). Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges[J]. Sci. Adv., 2017, 3(12): eaap9252. |
15 | Chen L Y, Luque R, Li Y W. Controllable design of tunable nanostructures inside metal-organic frameworks[J]. Chem. Soc. Rew., 2017, 46(41): 4614-4630. |
16 | Dang S, Zhu Q L, Xu Q, et al. Nanomaterials derived from metal-organic frameworks[J]. Nat. Rev. Mater., 2017, 3(1): 17075. |
17 | 谭雨薇, 龙涛, 宋雪婷, 等. 基于金属有机骨架的电催化产氢研究进展[J]. 应用化工, 2019, 48(9): 2226-2230. |
Tan Y W, Long T, Song X T, et al. Research progress on electrocatalytic hydrogen production based on metal-organic framework[J]. Appl. Chem. Industry, 2019, 48(9): 2226-2230. | |
88 | Wang T, Kou Z, Mu S, et al. 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries[J]. Adv. Funct. Mater., 2018, 28(5): 1705048. |
89 | Sun H, Lian Y B, Yang C, et al. Hierarchical nickel-carbon structure templated by metal-organic frameworks for efficient overall water splitting[J]. Energy Environ. Sci., 2018, 11(9): 2363-2371. |
18 | 玄翠娟, 王杰, 朱静, 等. 基于金属有机框架化合物纳米电催化剂的研究进展[J]. 物理化学学报, 2016, 33(1): 149-164. |
Xuan C J, Wang J, Zhu J, et al. Recent progress of metal organic frameworks-based nanomaterials for electrocatalysis[J]. Acta Physico-Chimica Sinica, 2016, 33(1): 149-164. | |
19 | Zhang H, Nai J, Yu L, et al. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications[J]. Joule, 2017, 1(1): 77-107. |
20 | Zhao M, Wang Y, Ma Q, et al. Ultrathin 2D metal-organic framework nanosheets[J]. Adv. Mater., 2015, 27(45): 7372-7378. |
90 | Huo M L, Wang B, Zhang C C, et al. 2D metal-organic framework derived CuCo alloy nanoparticles encapsulated by nitrogen-doped carbonaceous nanoleaves for efficient bifunctional oxygen electrocatalyst and zinc-air batteries[J]. Chem. A Eur. J., 2019, 25(55): 12780-12788. |
91 | Xu Q C, Jiang H, Li Y H, et al. In-situ enriching active sites on co-doped Fe-Co4N@N-C nanosheet array as air cathode for flexible rechargeable Zn-air batteries[J]. Appl. Catal. B: Environ., 2019, 256: 117893. |
21 | Simon-Yarza T, Giménez-Marqués M, Mrimi R, et al. A smart metal-organic framework nanomaterial for lung targeting[J]. Angew. Chem. Int. Ed., 2017, 56(49): 15565-15569. |
22 | Flügel E A, Ranft A, Haase F, et al. Synthetic routes toward MOF nanomorphologies[J]. J. Mater. Chem., 2012, 22(20): 10119-10133. |
23 | Zhao M, Lu Q, Ma Q, et al. Two-dimensional metal-organic framework nanosheets[J]. Small Methods, 2017, 1(1/2): 1600030. |
92 | Guan C, Sumboja A, Zang W, et al. Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries[J]. Energy Storage Mater., 2019, 16: 243-250. |
93 | Rodenas T, Beeg S, Spanos I, et al. 2D metal organic framework graphitic carbon nanocomposites as precursors for high-performance O2-evolution electrocatalysts[J]. Adv. Energy Mater., 2018, 8(35): 1802404. |
94 | Anantharaj S, Ede S R, Sakthikumar K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review[J]. ACS Catal., 2016, 6(12): 8069-8097. |
95 | Chen T, Li S, Wen J, et al. Metal organic framework template derived porous CoSe2 nanosheet arrays for energy conversion and storage[J]. ACS Appl. Mater. Inter., 2017, 9(41): 35927-35935. |
96 | Dong Q, Wang Q, Dai Z, et al. MOF-derived Zn doped CoSe2 as an efficient and stable free-standing catalyst for oxygen evolution reaction[J]. ACS Appl. Mater. Inter., 2016, 8(40): 26902-26907. |
97 | Wu H, Wang J, Yan J, et al. MOF-derived two-dimensional N-doped carbon nanosheets coupled with Co-Fe-P-Se as efficient bifunctional OER/ORR catalysts[J]. Nanoscale, 2019, 11: 20144. |
98 | Cheng F, Shen J, Peng B, et al. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts[J]. Nat. Chem., 2011, 3(1): 79-84. |
99 | Cheng F, Zhang T, Zhang Y, et al. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies[J]. Angew. Chem. Int. Ed., 2013, 52(9): 2474-2477. |
24 | Tan C, Cao X, Wu X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chem. Rev., 2017, 117(9): 6225-6331. |
25 | 王佛泉. 二维层状金属有机骨架的制备方法及研究进展[J]. 云南化工, 2019, 46(3): 50-51. |
Wang F Q. Preparation methods and research progress of two-dimensional layered organometallic skeleton[J]. Yunnan Chemical Technology, 2019, 46(3): 50-51. | |
100 | Zou Z, Cai M, Zhao X, et al. Defective metal-organic framework derivative by room-temperature exfoliation and reduction for highly efficient oxygen evolution reaction[J]. J. Mater. Chem. A, 2019, 7(23): 14011- 14018. |
101 | Sun T, Xu L, Wang D, et al. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion[J]. Nano Res., 2019, 12(9): 2067-2080. |
26 | Cao L, Lin Z, Peng F, et al. Self-supporting metal-organic layers as single-site solid catalysts[J]. Angew. Chem. Int. Ed., 2016, 55(16): 4962-4966. |
27 | Zhao W, Peng J, Wang W, et al. Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices[J]. Coordin. Chem. Rev., 2018, 377: 44-63. |
102 | Zang W, Sumboja A, Ma Y, et al. Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes[J]. ACS Catal., 2018, 8(10): 8961-8969. |
103 | Kong D, Wang Y, Huang S, et al. 3D self-branched zinc-cobalt oxide@N-doped carbon hollow nanowall arrays for high-performance asymmetric supercapacitors and oxygen electrocatalysis[J]. Energy Storage Mater., 2019, 23: 653-663. |
28 | Wang H, Chen L, Pang H, et al. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions.[J]. Chem. Soc. Rew., 2020, 49(5): 1414-1448. |
29 | Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1226419. |
30 | Sakata Y, Furukawa S, Kondo M, et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing[J]. Science, 2013, 339(6116): 193-196. |
31 | Kambe T, Sakamoto R, Hoshiko K, et al. π-Conjugated nickel bis (dithiolene) complex nanosheet[J]. J. Am. Chem. Soc., 2013, 135(7): 2462-2465. |
32 | Cliffe M J, Castillo-Martínez E, Wu Y, et al. Metal-organic nanosheets formed via defect-mediated transformation of a hafnium metal-organic framework[J]. J. Am. Chem. Soc., 2017, 139(15): 5397-5404. |
33 | Chaudhari A K, Kim H J, Han I, et al. Optochemically responsive 2D nanosheets of a 3D metal–organic framework material[J]. Adv. Mater., 2017, 29(27): 1701463. |
34 | Jiang Y, Liu H, Tan X, et al. Monoclinic ZIF-8 nanosheet-derived 2D carbon nanosheets as sulfur immobilizer for high-performance lithium sulfur batteries[J]. ACS Appl. Mater. Inter., 2017, 9(30): 25239-25249. |
35 | Huang L, Zhang X, Han Y, et al. In situ synthesis of ultrathin metal-organic framework nanosheets: a new method for 2D metal-based nanoporous carbon electrocatalysts[J]. J. Mater. Chem. A, 2017, 5(35): 18610-18617. |
36 | Shi Q, Fu S, Zhu C, et al. Energetic metal-organic frameworks for electrochemical oxygen evolution[J]. Mater. Horiz., 2019, 6(4): 684-702. |
37 | Jayaramulu K, Masa J, Morales D M, et al. Ultrathin 2D cobalt zeolite-imidazole framework nanosheets for electrocatalytic oxygen evolution[J]. Adv. Sci., 2018, 5(11): 1801029. |
38 | Huang J, Li Y, Huang R K, et al. Electrochemical exfoliation of pillared-layer metal-organic framework to boost the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2018, 130(17): 4722-4726. |
39 | Xu Y, Li B, Zheng S, et al. Ultrathin two-dimensional cobalt-organic framework nanosheets for high-performance electrocatalytic oxygen evolution[J]. J. Mater. Chem. A, 2018, 6(44): 22070-22076. |
40 | Jia H, Yao Y, Zhao J, et al. A novel two-dimensional nickel phthalocyanine-based metal-organic framework for highly efficient water oxidation catalysis[J]. J. Mater. Chem. A, 2018, 6(3): 1188-1195. |
41 | Song X, Peng C, Fei H. Enhanced electrocatalytic oxygen evolution by exfoliation of a metal-organic framework containing cationic one-dimensional [Co4(OH)2]6+ chains[J]. ACS Appl. Mater. Inter., 2018, 1(6): 2446-2451. |
42 | Zhao S, Wang Y, Dong J, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nat. Energy, 2016, 1(12): 1-10. |
43 | Pang W, Shao B, Tan X Q, et al. Exfoliation of metal-organic frameworks into efficient single-layer metal-organic nanosheet electrocatalysts by the synergistic action of host-guest interactions and sonication[J]. Nanoscale, 2020, 12(6): 3623-3629. |
44 | Liang H, Ge G, He Z, et al. Self-dissociation-assembly of ultrathin metal-organic framework nanosheet arrays for effcient oxygen evolution[J]. Nano Energy, 2020, 68: 104296. |
45 | Li F L, Wang P, Huang X, et al. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation[J]. Angew. Chem. Int. Ed., 2019, 131(21): 7125-7130. |
46 | Hai G, Jia X, Zhang K, et al. High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets[J]. Nano Energy, 2018, 44: 345-352. |
47 | Sun F, Wang G, Ding Y, et al. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction[J]. Adv. Energy Mater., 2018, 8(21): 1800584. |
48 | Lin H W, Raja D S, Chuah X F, et al. Bi-metallic MOFs possessing hierarchical synergistic effects as high performance electrocatalysts for overall water splitting at high current densities[J]. Appl. Catal. B: Environ., 2019, 258: 118023. |
49 | Raja D S, Lin H W, Lu S Y. Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities[J]. Nano Energy, 2019, 57: 1-13. |
50 | Cao C S, Ma D D, Xu Q, et al. Semisacrificial template growth of self-supporting MOF nanocomposite electrode for efficient electrocatalytic water oxidation[J]. Adv. Funct. Mater., 2019, 29(6): 1807418. |
51 | Luo S W, Gu R, Shi P H, et al. π-π interaction boosts catalytic oxygen evolution by self-supporting metal-organic frameworks[J]. J. Power Sources, 2020, 448: 227406. |
52 | Li W, Fang W, Wu C, et al. Bimetal-MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction[J]. J. Mater. Chem. A, 2020, 8(7): 3658-3666. |
53 | Xie M, Ma Y, Lin D, et al. Bimetal-organic framework MIL-53 (Co-Fe): an efficient and robust electrocatalyst for the oxygen evolution reaction[J]. Nanoscale, 2020, 12(1): 67-71. |
54 | Zhou W, Huang D D, Wu Y P, et al. Stable hierarchical bimetal-organic nanostructures as highperformance electrocatalysts for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2019, 58(13): 4227-4231. |
55 | Qian Q Z, Li Y P, Liu Y, et al. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis[J]. Adv. Mater., 2019, 31(23): 1901139. |
56 | Ding M, Chen J, Jiang M, et al. Ultrathin trimetallic metal-organic frameworks nanosheetsfor highly efficient oxygen evolution reaction[J]. J. Mater. Chem. A, 2019, 7: 14163-14168. |
57 | Xue Z, Liu K, Liu Q, et al. Missing-linker metal-organic frameworks for oxygen evolution reaction[J]. Nat. Commun., 2019, 10(1): 5048. |
58 | Zhu D D, Liu J L, Zhao Y Q, et al. Engineering 2D metal-organic framework/MoS2 interface for enhanced alkaline hydrogen evolution[J]. Small, 2019, 15(14): 1805511. |
59 | Zheng X, Cao Y, Liu D, et al. Bimetallic metal-organic-framework/reduced graphene oxide composites as bifunctional electrocatalysts for rechargeable Zn-air batteries[J]. ACS Appl. Mater. Inter., 2019, 11(17): 15662-15669. |
60 | Hu W C, Shi Y, Zhou Y, et al. Plasmonic hot charge carriers activated Ni centres of metal-organic frameworks for the oxygen evolution reaction[J]. J. Mater. Chem. A, 2019, 7(17): 10601-10609. |
61 | Xia Z, Fang J, Zhang X, et al. Pt nanoparticles embedded metal-organic framework nanosheets: a synergistic strategy towards bifunctional oxygen electrocatalysis[J]. Appl. Catal. B: Environ., 2019, 245: 389-398. |
62 | Zhu D, Liu J, Wang L, et al. 2D metal-organic framework/Ni(OH)2 heterostructure for enhanced oxygen evolution reaction[J]. Nanoscale, 2019, 11(8): 3599-3605. |
63 | Rui K, Zhao G Q, Chen Y Q, et al. Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis[J]. Adv. Funct. Mater., 2018, 28(26): 1801554. |
64 | Duan J, Chen S, Zhao C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting[J]. Nat. Commun., 2017, 8: 15341. |
65 | Wang B, Shang J, Guo C, et al. A general method to ultrathin bimetal-MOF nanosheets arrays via in situ transformation of layered double hydroxides arrays[J]. Small, 2019, 15(6): 1804761. |
66 | Xu J, Zhao Y, Li M, et al. A strong coupled 2D metal-organic framework and ternary layered double hydroxide hierarchical nanocomposite as an excellent electrocatalyst for the oxygen evolution reaction[J]. Electrochim. Acta, 2019, 307: 275-284. |
67 | Hu Q, Huang X W, Wang Z Y, et al. Unconventionally fabricating defect-rich NiO nanoparticles within ultrathin metal-organic frameworks nanosheets to enable high-output oxygen evolution[J]. J. Mater. Chem. A, 2020, 8(4): 2140-2146. |
68 | Chen W X, Zhang Y W, Chen G L, et al. Mesoporous cobalt-iron-organic frameworks: a plasma-enhanced oxygen evolution electrocatalyst[J]. J. Mater. Chem. A, 2019, 7(7): 3090-3100. |
69 | Li Y, Lu M, Wu Y, et al. Trimetallic metal-organic framework derived electrocatalysts for efficient overall water splitting[J]. Adv. Mater. Inter., 2019, 6(12): 1900290. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[9] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[10] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[11] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[12] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[13] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[14] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[15] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||