CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3355-3368.DOI: 10.11949/0438-1157.20220716
• Reviews and monographs • Previous Articles Next Articles
Xinhua LIU1(), Zhennan HAN2, Jian HAN1, Bin LIANG1, Nan ZHANG1, Shanwei HU1, Dingrong BAI2, Guangwen XU2()
Received:
2022-05-19
Revised:
2022-06-22
Online:
2022-09-06
Published:
2022-08-05
Contact:
Xinhua LIU, Guangwen XU
刘新华1(), 韩振南2, 韩健1, 梁斌1, 张楠1, 胡善伟1, 白丁荣2, 许光文2()
通讯作者:
刘新华,许光文
作者简介:
刘新华(1974—),男,博士,研究员,xhliu@ipe.ac.cn
基金资助:
CLC Number:
Xinhua LIU, Zhennan HAN, Jian HAN, Bin LIANG, Nan ZHANG, Shanwei HU, Dingrong BAI, Guangwen XU. Principle and technology of low-NO x decoupling combustion based on restructuring reactions[J]. CIESC Journal, 2022, 73(8): 3355-3368.
刘新华, 韩振南, 韩健, 梁斌, 张楠, 胡善伟, 白丁荣, 许光文. 基于热解与燃烧反应重构的低NO x 解耦燃烧原理与技术[J]. 化工学报, 2022, 73(8): 3355-3368.
Add to citation manager EndNote|Ris|BibTeX
Mode of combustion | NO x emissions/ (mg/m3) | Outlet oxygen content/% (vol) | LOI of slag/ % (mass) |
---|---|---|---|
TC | 284.9 | 14.1 | 23.0 |
DC | 180.4 | 10.7 | 9.8 |
improvement | decreased by 36.7% | decreased by 24.1% | decreased by 57.4% |
Table 1 Improvement of traditional grate-firing boilers by using decoupling combustion technology[44]
Mode of combustion | NO x emissions/ (mg/m3) | Outlet oxygen content/% (vol) | LOI of slag/ % (mass) |
---|---|---|---|
TC | 284.9 | 14.1 | 23.0 |
DC | 180.4 | 10.7 | 9.8 |
improvement | decreased by 36.7% | decreased by 24.1% | decreased by 57.4% |
1 | Yang H R, Yue G X, Lv J F, et al. An update of circulating fluidized bed combustion (CFBC) technology in China [J]. VGB PowerTech, 2012, 12: 1-5. |
2 | 许光文, 高士秋, 余剑, 等. 解耦热化学转化基础与技术[M]. 北京: 科学出版社, 2016. |
Xu G W, Gao S Q, Yu J, et al. Fundamentals and Technologies of Decoupling Thermochemical Conversion [M]. Beijing: Science Press, 2016. | |
3 | 李静海, 许光文, 杨励丹, 等. 一种抑制氮氧化物的无烟燃煤方法及燃煤炉: 95102081.1 [P]. 1995-10-25. |
Li J H, Xu G W, Yang L D, et al. A NO x -suppressed smokeless coal-fired method as well as corresponding stove: 95102081.1 [P]. 1995-10-25. | |
4 | Li J H, Bai Y R, Song W L. NO x -suppressed smokeless coal combustion technique [C]//Proceedings of International Symposium on Clean Coal Technology. Xiamen, China, 1997: 344-349. |
5 | 李静海, 郭慕孙, 白蕴茹, 等. 解耦循环流化床燃烧系统及其脱硫与脱硝方法: 97112562.7 [P]. 1997-06-25. |
Li J H, Kwauk M, Bai Y R, et al. Decoupling circulating fluidized bed combustion system as well as its DeSO x and DeNO x methods: 97112562.7 [P]. 1997-06-25. | |
6 | He J D, Song W L, Gao S Q, et al. Experimental study of the reduction mechanisms of NO emission in decoupling combustion of coal[J]. Fuel Processing Technology, 2006, 87(9): 803-810. |
7 | 郝江平, 高士秋, 孙广藩, 等. 燃煤工业锅炉的发展与解耦燃烧技术的开发[J]. 工业锅炉, 2014(4): 7-11. |
Hao J P, Gao S Q, Sun G F, et al. Status of coal-fired industrial boilers and development of decoupling combustion technique[J]. Industrial Boiler, 2014(4): 7-11. | |
8 | 郝江平, 孙广藩, 李静海, 等. 一种燃煤解耦燃烧装置及燃烧方法: 201310381626.7 [P]. 2016-06-29. |
Hao J P, Sun G F, Li J H, et al. A decoupling coal-fired appliance as well as its combustion method: 201310381626.7 [P]. 2016-06-29. | |
9 | 刘新华, 郝江平, 张楠, 等. 一种解耦燃烧装置及燃烧方法: 201710512563.2[P]. 2017-06-29 |
Liu X H, Hao J P, Zhang N, et al. A decoupling combustion appliance as well as its combustion method: 2017105112563.2 [P]. 2017-06-29. | |
10 | 刘新华, 郝江平, 张楠. 一种生物质解耦燃烧装置及方法: 202010454344.5 [P]. 2021-12-06. |
Liu X H, Hao J P, Zhang N. A decoupling biomass-fired appliance as well as its combustion method: 202010454344.5 [P]. 2021-12-06. | |
11 | 郝江平, 高士秋, 李静海, 等. 一种预燃式机械炉排解耦燃烧炉及其燃烧方法: 201110322136.0 [P]. 2015-02-18. |
Hao J P, Gao S Q, Li J H, et al. A pre-burning decoupling grate-firing boiler as well as its combustion method: 201110322136.0 [P]. 2015-02-18. | |
12 | 郝江平, 刘新华, 李静海, 等. 一种空气分级解耦燃烧机械炉排燃烧炉及其燃烧方法: 201710102625.2 [P]. 2017-02-24. |
Hao J P, Liu X H, Li J H, et al. An air-staged decoupling grate-firing boiler as well as its combustion method: 201710102625.2 [P]. 2017-02-24. | |
13 | 郝江平, 刘新华, 高士秋, 等. 一种解耦燃烧机械炉排炉及其燃烧方法: 202010468258.X [P]. 2021-12-09. |
Hao J P, Liu X H, Gao S Q, et al. A decoupling grate-firing boiler as well as its combustion method: 202010468258.X [P]. 2021-12-09. | |
14 | 姚常斌, 董利, 李强, 等. 一种高含水固体废弃物的解耦燃烧方法和装置: 201010218118.3 [P]. 2010-06-24. |
Yao C B, Dong L, Li Q, et al. A decoupling combustion method of high-moisture content solid wastes as well as corresponding combustion appliance: 201010218118.3 [P]. 2010-06-24. | |
15 | Klein F, Platt S M, Farren N J, et al. Characterization of gas-phase organics using proton transfer reaction time-of-flight mass spectrometry: cooking emissions[J]. Environmental Science & Technology, 2016, 50(3): 1243-1250. |
16 | Glarborg P, Miller J A, Ruscic B, et al. Modeling nitrogen chemistry in combustion[J]. Progress in Energy and Combustion Science, 2018, 67: 31-68. |
17 | Johnsson J E. Formation and reduction of nitrogen oxides in fluidized-bed combustion[J]. Fuel, 1994, 73(9): 1398-1415. |
18 | Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion[J]. Progress in Energy and Combustion Science, 1989, 15(4): 287-338. |
19 | Visona S P, Stanmore B R. Modeling NO x release from a single coal particle(Ⅱ): Formation of NO from char-nitrogen[J]. Combustion and Flame, 1996, 106(3): 207-218. |
20 | Liu S Y, Wang Y, Wu R C, et al. Fundamentals of catalytic tar removal over in situ and ex situ chars in two-stage gasification of coal[J]. Energy & Fuels, 2014, 28(1): 58-66. |
21 | Dong L, Gao S Q, Song W L, et al. Experimental study of NO reduction over biomass char[J]. Fuel Processing Technology, 2007, 88(7): 707-715. |
22 | Molina A, Eddings E G, Pershing D W, et al. Char nitrogen conversion: implications to emissions from coal-fired utility boilers[J]. Progress in Energy and Combustion Science, 2000, 26(4/5/6): 507-531. |
23 | Li H L, Han J, Zhang N, et al. Effects of high-temperature char layer and pyrolysis gas on NO x reduction in a typical decoupling combustion coal-fired stove[J]. Journal of Thermal Science, 2019, 28(1): 40-50. |
24 | Vilas E, Skifter U, Jensen A D, et al. Experimental and modeling study of biomass reburning[J]. Energy & Fuels, 2004, 18(5): 1442-1450. |
25 | Ballester J, Ichaso R, Pina A, et al. Experimental evaluation and detailed characterisation of biomass reburning[J]. Biomass and Bioenergy, 2008, 32(10): 959-970. |
26 | Munir S, Nimmo W, Gibbs B M. The effect of air staged, co-combustion of pulverised coal and biomass blends on NO x emissions and combustion efficiency[J]. Fuel, 2011, 90(1): 126-135. |
27 | Song Y, Wang Y, Yang W, et al. Reduction of NO over biomass tar in micro-fluidized bed[J]. Fuel Processing Technology, 2014, 118: 270-277. |
28 | Do H S, Bunman Y, Gao S Q, et al. Reduction of NO by biomass pyrolysis products in an experimental drop-tube[J]. Energy & Fuels, 2017, 31(4): 4499-4506. |
29 | Cai L G, Shang X, Gao S Q, et al. Low-NO x coal combustion via combining decoupling combustion and gas reburning[J]. Fuel, 2013, 112: 695-703. |
30 | Duan J, Luo Y H, Yan N Q, et al. Effect of biomass gasification tar on NO reduction by biogas reburning[J]. Energy & Fuels, 2007, 21(3): 1511-1516. |
31 | Liu C Y, Luo Y H, Duan J, et al. Experimental study on the effect of NO reduction by tar model compounds[J]. Energy & Fuels, 2009, 23(8): 4099-4104. |
32 | Zhang R Z, Liu C Y, Yin R H, et al. Experimental and kinetic study of the NO-reduction by tar formed from biomass gasification, using benzene as a tar model component[J]. Fuel Processing Technology, 2011, 92(1): 132-138. |
33 | Liang B, Bai H L, Bai D R, et al. Emissions of non-methane hydrocarbons and typical volatile organic compounds from various grate-firing coal furnaces[J]. Atmospheric Pollution Research, 2022, 13(4): 101380. |
34 | 韩健, 刘新华, 何京东, 等. 民用解耦燃煤炉中的NO x 和CO同时减排[J]. 化工学报, 2019, 70(5): 1991-1998. |
Han J, Liu X H, He J D, et al. Simultaneous reduction of NO x and CO emissions in domestic decoupling coal-fired stoves[J]. CIESC Journal, 2019, 70(5): 1991-1998. | |
35 | 韩健, 刘新华, 何京东. 典型煤炭燃料在民用解耦炉中的燃烧实验研究[J]. 过程工程学报, 2020, 20(6): 728-736. |
Han J, Liu X H, He J D. Experimental study on the combustion of typical coal fuels in domestic decoupling stoves[J]. The Chinese Journal of Process Engineering, 2020, 20(6): 728-736. | |
36 | Jin N N, Guo L, Liu X H. Machine learning-aided optimization of coal decoupling combustion for lowering NO and CO emissions simultaneously[J]. Computers & Chemical Engineering, 2022, 162: 107822. |
37 | 梁斌, 白浩隆, 冯强, 等. 民用燃煤颗粒物及多环芳烃排放特性[J]. 化工学报, 2019, 70(8): 2888-2897. |
Liang B, Bai H L, Feng Q, et al. Emissions of particulate matter and polycyclic aromatic hydrocarbons from household coal combustions[J]. CIESC Journal, 2019, 70(8): 2888-2897. | |
38 | Dong L, Gao S Q, Song W L, et al. NO reduction in decoupling combustion of biomass and biomass-coal blend[J]. Energy & Fuels, 2009, 23(1): 224-228. |
39 | Li H J, Chi H Y, Han H D, et al. Comprehensive study on co-combustion behavior of pelletized coal-biomass mixtures in a concentrating photothermal reactor[J]. Fuel Processing Technology, 2021, 211: 106596. |
40 | Rajh B, Yin C G, Samec N, et al. Advanced CFD modelling of air and recycled flue gas staging in a waste wood-fired grate boiler for higher combustion efficiency and greater environmental benefits[J]. Journal of Environmental Management, 2018, 218: 200-208. |
41 | Xu L, Zhao G B, Gao J M, et al. Effect of flue gas recirculation on nitric oxide (NO) emissions during the coal grate-fired process[J]. Toxicological & Environmental Chemistry, 2017, 99(5/6): 783-794. |
42 | Du H L, Zhang M, Zhang Y L, et al. Characteristics of NO reduction by char layer in fixed-bed coal combustion[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2017, 39(10): 963-970. |
43 | Jiao L, Kuang M, Chen Y Y, et al. Detailed measurements of in-furnace gas temperature and species concentration distribution regarding the primary-air distribution mode in a spreader and reversal chain-grate furnace[J]. Energy, 2021, 235: 121384. |
44 | 王海苗, 宋令坡, 杨晓辉, 等. 预燃低氮燃烧技术在燃煤工业链条排炉中的应用[J]. 煤炭加工与综合利用, 2019(6): 83-87. |
Wang H M, Song L P, Yang X H, et al. Application of low-nitrogen pre-combustion technology in coal-fired industrial chain boiler[J]. Coal Processing & Comprehensive Utilization, 2019(6): 83-87. | |
45 | Yao C B, Dong L, Wang Y, et al. Fluidized bed pyrolysis of distilled spirits lees for adapting to its circulating fluidized bed decoupling combustion[J]. Fuel Processing Technology, 2011, 92(12): 2312-2319. |
46 | Han Z N, Geng S L, Zeng X, et al. Reaction decoupling in thermochemical fuel conversion and technical progress based on decoupling using fluidized bed[J]. Carbon Resources Conversion, 2018, 1(2): 109-125. |
47 | 姚常斌. 白酒糟双流化床解耦燃烧研究[D]. 北京: 中国科学院研究生院, 2011. |
Yao C B. Dual fluidized bed decoupling combustion of distilled spirits lees [D]. Beijing: Graduate University of Chinese Academy of Sciences, 2011. | |
48 | Han Z N, Zeng X, Yao C B, et al. Comparison of direct combustion in a circulating fluidized bed system and decoupling combustion in a dual fluidized bed system for distilled spirit lees[J]. Energy & Fuels, 2016, 30(3): 1693-1700. |
49 | Zhang J W, Wu R C, Zhang G Y, et al. Technical review on thermochemical conversion based on decoupling for solid carbonaceous fuels[J]. Energy & Fuels, 2013, 27(4): 1951-1966. |
50 | Zhang C, Wu R C, Xu G W. Coal pyrolysis for high-quality tar in a fixed-bed pyrolyzer enhanced with internals[J]. Energy & Fuels, 2014, 28(1): 236-244. |
51 | Lin L X, Zhang C, Li H J, et al. Pyrolysis in indirectly heated fixed bed with internals: the first application to oil shale[J]. Fuel Processing Technology, 2015, 138: 147-155. |
52 | Zeng X, Ueki Y, Yoshiie R, et al. Recent progress in tar removal by char and the applications: a comprehensive analysis[J]. Carbon Resources Conversion, 2020, 3: 1-18. |
53 | Zeng X, Wang F, Han Z N, et al. Assessment of char property on tar catalytic reforming in a fluidized bed reactor for adopting a two-stage gasification process[J]. Applied Energy, 2019, 248: 115-125. |
54 | Zeng X, Wang F, Han Z N, et al. Characterization and pilot scale test of a fluidized bed two-stage gasification process for the production of clean industrial fuel gas from low-rank coal[J]. Carbon Resources Conversion, 2018, 1(1): 73-80. |
[1] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[2] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[3] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[4] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[5] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[6] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[7] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[8] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[9] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[10] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[11] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[12] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[13] | Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance [J]. CIESC Journal, 2022, 73(9): 4194-4206. |
[14] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[15] | Dongwang ZHANG, Hairui YANG, Tuo ZHOU, Zhong HUANG, Shiyuan LI, Man ZHANG. Cold-state experimental study on ash deposition of convection heating surface of biomass boiler [J]. CIESC Journal, 2022, 73(8): 3731-3738. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||