CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3299-3306.DOI: 10.11949/0438-1157.20220760
• Focal issues and hot topics • Previous Articles Next Articles
Received:
2022-05-30
Revised:
2022-07-20
Online:
2022-09-06
Published:
2022-08-05
Contact:
Zhenyu LIU
通讯作者:
刘振宇
CLC Number:
Zhenyu LIU. Origin of low productivity of underground coal gasification: diffusion and reaction in stagnant boundary layer and gasification tunnel[J]. CIESC Journal, 2022, 73(8): 3299-3306.
刘振宇. 煤地下气化低效的化学反应工程根源:滞留层及通道中的传质与反应[J]. 化工学报, 2022, 73(8): 3299-3306.
试验年份 和地点 | 气化通道尺寸 | 粗煤气产出 | 有效气产量/ (m3/h) | 产气组成/%(有些总和不是100%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
长度/ m | 断面/ m2 | 气化面/ m2 | 产量/ (m3/h) | 速率/ (m/h) | 热值/ (MJ/m3) | CO | H2 | CO2 | CH4 | O2 | N2 | ||
1948美国高尔加斯 | 90 | 0.7 | 267 | 1870 | 7.0 | 0.1~0.9 | 34 | 0.5 | 0.9 | 6.0 | 0.4 | 12.7 | 79.5 |
1952美国高尔加斯 | 45 | 0.5 | 113 | 2110 | 19 | 2.7 | 352 | 7.1 | 7.6 | 11.7 | 2.1 | 0.6 | 70.9 |
1978美国汉纳 | 62 | 1.1 | 230 | 2040 | 8.9 | 8.4 | 757 | 1.9 | 25.1 | 44.0 | 10.1 | 0 | 16.1 |
1979比利时布阿略达姆 | 87 | 1.4 | 365 | 2500 | 6.8 | 8.5 | 1500 | 18.5 | 36.1 | 36.1 | 5.4 | 0.1 | 0 |
101 | 2.1 | 519 | 1950 | 3.8 | 9.7 | 1385 | 36.2 | 31.8 | 31.8 | 3.0 | 0.1 | 2.0 | |
1952苏联顿巴斯 | 85 | 1.4 | 356 | 3080 | 8.7 | 4.2 | 1001 | 15.9 | 14.8 | 12.1 | 1.8 | 0.2 | 54.8 |
1956苏联莫斯科近郊 | 66 | 1.5 | 286 | 2900 | 10.1 | 3.5 | 658 | 7.1 | 14.1 | 19.5 | 1.5 | 0.3 | 55.9 |
1950英国纽门斯平尼 | 27.5 | 0.4 | 63 | 300 | 4.8 | 2.1 | 41 | 4.9 | 7.9 | 15.5 | 1.0 | 0 | 70.7 |
1994中国徐州新河 | 168 | 2.6 | 960 | 3240 | 3.4 | 13.1 | 2657① | 12.2 | 58.0 | 14.6 | 11.9 | 0 | 3.3 |
1996中国唐山刘庄 | 110/200 | 3.4 | 1319/ 2638 | 2325 | 1.8 | 12.5 | 1674 | 14.0 | 46.0 | 17.0 | 12.0 | 10.0 | |
4583 | 3.5 | 5.0 | 1627 | 15.0 | 15.0 | 13.5 | 3.0 | 52.5 | |||||
1996中国山东新汶 | 63/74 | 1357 | 10.1 | 841 | 9.4 | 44.1 | 30.0 | 8.5 | 0.7 | 7.9 | |||
2007中国乌兰察布 | 6250 | ||||||||||||
2010中国甘肃华亭 | 3067 | 4.1 | 938 | 12.7 | 16.3 | 17.5 | 1.5 | 0 | 51.7 | ||||
3216 | 4.8 | 1141 | 13.9 | 19.6 | 15.5 | 2.0 | 0 | 48.7 | |||||
3408 | 5.6 | 1388 | 18.0 | 20.6 | 19.0 | 2.1 | 0 | 39.8 | |||||
2096 | 6.7 | 1043 | 22.1 | 25.4 | 21.2 | 2.3 | 0 | 28.6 | |||||
1140 | 9.3 | 790 | 29.6 | 36.2 | 25.7 | 3.5 | 0 | 4.5 |
Table 1 Field data of underground gasification[4-7]
试验年份 和地点 | 气化通道尺寸 | 粗煤气产出 | 有效气产量/ (m3/h) | 产气组成/%(有些总和不是100%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
长度/ m | 断面/ m2 | 气化面/ m2 | 产量/ (m3/h) | 速率/ (m/h) | 热值/ (MJ/m3) | CO | H2 | CO2 | CH4 | O2 | N2 | ||
1948美国高尔加斯 | 90 | 0.7 | 267 | 1870 | 7.0 | 0.1~0.9 | 34 | 0.5 | 0.9 | 6.0 | 0.4 | 12.7 | 79.5 |
1952美国高尔加斯 | 45 | 0.5 | 113 | 2110 | 19 | 2.7 | 352 | 7.1 | 7.6 | 11.7 | 2.1 | 0.6 | 70.9 |
1978美国汉纳 | 62 | 1.1 | 230 | 2040 | 8.9 | 8.4 | 757 | 1.9 | 25.1 | 44.0 | 10.1 | 0 | 16.1 |
1979比利时布阿略达姆 | 87 | 1.4 | 365 | 2500 | 6.8 | 8.5 | 1500 | 18.5 | 36.1 | 36.1 | 5.4 | 0.1 | 0 |
101 | 2.1 | 519 | 1950 | 3.8 | 9.7 | 1385 | 36.2 | 31.8 | 31.8 | 3.0 | 0.1 | 2.0 | |
1952苏联顿巴斯 | 85 | 1.4 | 356 | 3080 | 8.7 | 4.2 | 1001 | 15.9 | 14.8 | 12.1 | 1.8 | 0.2 | 54.8 |
1956苏联莫斯科近郊 | 66 | 1.5 | 286 | 2900 | 10.1 | 3.5 | 658 | 7.1 | 14.1 | 19.5 | 1.5 | 0.3 | 55.9 |
1950英国纽门斯平尼 | 27.5 | 0.4 | 63 | 300 | 4.8 | 2.1 | 41 | 4.9 | 7.9 | 15.5 | 1.0 | 0 | 70.7 |
1994中国徐州新河 | 168 | 2.6 | 960 | 3240 | 3.4 | 13.1 | 2657① | 12.2 | 58.0 | 14.6 | 11.9 | 0 | 3.3 |
1996中国唐山刘庄 | 110/200 | 3.4 | 1319/ 2638 | 2325 | 1.8 | 12.5 | 1674 | 14.0 | 46.0 | 17.0 | 12.0 | 10.0 | |
4583 | 3.5 | 5.0 | 1627 | 15.0 | 15.0 | 13.5 | 3.0 | 52.5 | |||||
1996中国山东新汶 | 63/74 | 1357 | 10.1 | 841 | 9.4 | 44.1 | 30.0 | 8.5 | 0.7 | 7.9 | |||
2007中国乌兰察布 | 6250 | ||||||||||||
2010中国甘肃华亭 | 3067 | 4.1 | 938 | 12.7 | 16.3 | 17.5 | 1.5 | 0 | 51.7 | ||||
3216 | 4.8 | 1141 | 13.9 | 19.6 | 15.5 | 2.0 | 0 | 48.7 | |||||
3408 | 5.6 | 1388 | 18.0 | 20.6 | 19.0 | 2.1 | 0 | 39.8 | |||||
2096 | 6.7 | 1043 | 22.1 | 25.4 | 21.2 | 2.3 | 0 | 28.6 | |||||
1140 | 9.3 | 790 | 29.6 | 36.2 | 25.7 | 3.5 | 0 | 4.5 |
气化炉 | 单台规模 | 产气组成/%(有些总和不是100%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
煤量/(t/d) | 粗气/(m3/h) | 有效气/(m3/h) | CO | H2 | CO2 | CH4 | O2 | N2 | ||
气流床 (1400~1600℃) | 多喷嘴对置[ | 3000 4000 | — | 200000 247500 | 45.5 | 35.5 | 18.5 | — | — | — |
GE[ | — | — | 43.9 | 37.0 | 19.5 | — | — | — | ||
航天炉[ | 3500 | — | — | 67.5 | 25.0 | 5.5 | — | — | — | |
壳牌[ | 3000 | — | — | 63.3 | 21.1 | 13.8 | — | — | 1.8 | |
GSP[ | 2000 | — | — | 58.9 | 29.1 | 5.6 | — | — | — | |
西安热工两段[ | 2000 | — | — | 51.0 | 31.2 | 17.8 | — | 0.1 | — | |
流化床 (800~1000℃) | 中科院工热所[ | 2500 | 200000 | — | — | — | — | — | — | — |
循环流化床[ | 700~1000 | 80000 | — | — | — | — | — | — | — | |
灰熔聚-瘦煤[ | — | — | 26.7 | 42.1 | 21.0 | 1.9 | — | 8.2 | ||
灰熔聚-长焰煤[ | — | — | 29.5 | 39.7 | 21.6 | 1.7 | — | 7.4 | ||
流化床[ | — | — | — | 41.5 | 38.5 | 15.0 | — | — | — | |
移动床 (固态排渣和液态排渣的温度不同,气化区温度800~1400℃) | 碎煤加压固态排渣[ | 1500 | — | 119,000 | 25 | 38.5 | 22.5 | 10.5 | — | — |
碎煤加压-义马 | — | 110000 | — | — | — | — | — | — | — | |
鲁奇Mark V固渣 | 2000 | 100000~140000 | — | — | — | — | — | — | — | |
Mark+[ | — | 120000 | — | — | — | — | — | — | — | |
鲁奇无烟煤[ | — | — | — | 20.3 | 45.3 | 27.5 | 4.7 | — | 1.3 | |
鲁奇次烟煤[ | — | — | — | 21.4 | 38.4 | 28.9 | 9.6 | — | 1.0 | |
鲁奇褐煤[ | — | — | — | 19.1 | 37.2 | 30.7 | 11.8 | — | 0.5 |
Table 2 Capacity and gas composition of gasifiers
气化炉 | 单台规模 | 产气组成/%(有些总和不是100%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
煤量/(t/d) | 粗气/(m3/h) | 有效气/(m3/h) | CO | H2 | CO2 | CH4 | O2 | N2 | ||
气流床 (1400~1600℃) | 多喷嘴对置[ | 3000 4000 | — | 200000 247500 | 45.5 | 35.5 | 18.5 | — | — | — |
GE[ | — | — | 43.9 | 37.0 | 19.5 | — | — | — | ||
航天炉[ | 3500 | — | — | 67.5 | 25.0 | 5.5 | — | — | — | |
壳牌[ | 3000 | — | — | 63.3 | 21.1 | 13.8 | — | — | 1.8 | |
GSP[ | 2000 | — | — | 58.9 | 29.1 | 5.6 | — | — | — | |
西安热工两段[ | 2000 | — | — | 51.0 | 31.2 | 17.8 | — | 0.1 | — | |
流化床 (800~1000℃) | 中科院工热所[ | 2500 | 200000 | — | — | — | — | — | — | — |
循环流化床[ | 700~1000 | 80000 | — | — | — | — | — | — | — | |
灰熔聚-瘦煤[ | — | — | 26.7 | 42.1 | 21.0 | 1.9 | — | 8.2 | ||
灰熔聚-长焰煤[ | — | — | 29.5 | 39.7 | 21.6 | 1.7 | — | 7.4 | ||
流化床[ | — | — | — | 41.5 | 38.5 | 15.0 | — | — | — | |
移动床 (固态排渣和液态排渣的温度不同,气化区温度800~1400℃) | 碎煤加压固态排渣[ | 1500 | — | 119,000 | 25 | 38.5 | 22.5 | 10.5 | — | — |
碎煤加压-义马 | — | 110000 | — | — | — | — | — | — | — | |
鲁奇Mark V固渣 | 2000 | 100000~140000 | — | — | — | — | — | — | — | |
Mark+[ | — | 120000 | — | — | — | — | — | — | — | |
鲁奇无烟煤[ | — | — | — | 20.3 | 45.3 | 27.5 | 4.7 | — | 1.3 | |
鲁奇次烟煤[ | — | — | — | 21.4 | 38.4 | 28.9 | 9.6 | — | 1.0 | |
鲁奇褐煤[ | — | — | — | 19.1 | 37.2 | 30.7 | 11.8 | — | 0.5 |
项目 | 地下气化① | 移动床 | 流化床 | 气流床 |
---|---|---|---|---|
颗粒直径d/10-3 m | 700 | 10 | 4 | 0.02 |
等质量煤颗粒数之比 | — | 1 | 15.6 | 1250000 |
等质量煤颗粒表面积A之比 | 0.014 | 1 | 2.5 | 500 |
气化炉中煤颗粒的停留时间/s | — | 3600 | 1200~1800 | 5~10 |
气化炉中瞬时煤质量的表面积比 | 0.014 | 1 | 0.8~1.3 | 0.7~1.4 |
Table 3 Surface area comparison of coal particles on mass basis (based on a single fixed-bed coal particle of d=10 ×10-3 m)
项目 | 地下气化① | 移动床 | 流化床 | 气流床 |
---|---|---|---|---|
颗粒直径d/10-3 m | 700 | 10 | 4 | 0.02 |
等质量煤颗粒数之比 | — | 1 | 15.6 | 1250000 |
等质量煤颗粒表面积A之比 | 0.014 | 1 | 2.5 | 500 |
气化炉中煤颗粒的停留时间/s | — | 3600 | 1200~1800 | 5~10 |
气化炉中瞬时煤质量的表面积比 | 0.014 | 1 | 0.8~1.3 | 0.7~1.4 |
1 | Perkins G. Underground coal gasification (Part I): Field demonstrations and process performance[J]. Progress in Energy and Combustion Science, 2018, 67: 158-187. |
2 | 王庆一. 国外煤炭地下气化调查[J]. 中国煤炭, 2002, 28(4): 57-61. |
Wang Q Y. A survey of underground coal gasification in foreign countries [J]. China Coal, 2002, 28(4): 57-61. | |
3 | 王辅臣. 煤气化技术在中国: 回顾与展望[J]. 洁净煤技术, 2021, 27(1): 1-33. |
Wang F C. Coal gasification technologies in China: review and prospect[J]. Clean Coal Technology, 2021, 27(1): 1-33. | |
4 | 梁杰, 余力. “长通道、大断面”煤炭地下气化新工艺[J]. 中国煤炭, 2002, 28(12): 8-10, 13. |
Liang J, Yu L. Underground coal gasification by the new technique of “long passage with large cross section”[J]. China Coal, 2002, 28(12): 8-10, 13. | |
5 | 煤炭地下气化技术报告[R/OL]. [2015-08-27]. . |
Underground coal gasification[R/OL]. [2015-08-27]. . | |
6 | 梁杰, 朗庆田, 余力, 等. 缓倾斜薄煤层地下气化试验研究[J]. 煤炭学报, 2003, 28(2): 126-130. |
Liang J, Lang Q T, Yu L, et al. Study on underground gasification test of gently inclined thin seam[J]. Journal of China Coal Society, 2003, 28(2): 126-130. | |
7 | 王作棠, 王建华, 张朋, 等. 华亭煤地下导控气化现场试验的产气效果分析[J]. 中国煤炭, 2012, 38(11): 71-74. |
Wang Z T, Wang J H, Zhang P, et al. Analysis of effect of underground guided coal gasification field trial at Huating coal group[J]. China Coal, 2012, 38(11): 71-74. | |
8 | 周昊, 郭娇娇, 何绪文, 等. 煤地下气化对地下水的影响及防治措施[J]. 煤炭技术, 2018, 37(2): 154-156. |
Zhou H, Guo J J, He X W, et al. Research on effects of underground coal gasification process on groundwater and control measures[J]. Coal Technology, 2018, 37(2): 154-156. | |
9 | 安文华, 安利军. 煤炭地下气化过程的变化规律和提高煤气热值问题[J]. 黑龙江科技学院学报, 2004, 14(3): 133-136. |
An W H, An L J. Study on the laws governing underground coal gasification and the question on raising thermal value of gas[J]. Journal of Heilongjiang Institute of Science, 2004, 14(3): 133-136. | |
10 | 王欢, 范飞, 李鹏飞, 等. 现代煤气化技术进展及产业现状分析[J]. 煤化工, 2021, 49(4): 52-56. |
Wang H, Fan F, Li P F, et al. Modern coal gasification technology progress and industry status analysis[J]. Coal Chemical Industry, 2021, 49(4): 52-56. | |
11 | 吴同舫. 主流煤炭气化技术性能的对比研究[J]. 天然气化工(C1化学与化工), 2016, 41(5): 78-82. |
Wu T F. Technical performance comparison of three different coal gasification technologies[J]. Natural Gas Chemical Industry, 2016, 41(5): 78-82. | |
12 | 李耀武, 刘侃. 现代煤气化技术发展综述[J]. 河南科技, 2017(7): 150-151. |
Li Y W, Liu K. Summary of the development of modern coal gasification technologies[J]. Henan Science and Technology, 2017(7): 150-151. | |
13 | 邹家富, 于要娟, 聂成元. 干粉加压气化水激冷与气激冷工艺比较[J]. 化肥设计, 2014, 52(5): 20-21, 24. |
Zou J F, Yu Y J, Nie C Y. Process comparison for water quenching and gas quenching in dry powder pressurized coal gasification[J]. Chemical Fertilizer Design, 2014, 52(5): 20-21, 24. | |
14 | CGAS 技术亮相中国(安徽)科交会 中合气化加速推进产业化引关注[EB/OL]. . |
ZHGAS accelerates commercialization of CGAS technologies at the 2021 China Anhui Science and Technology Innovation Achievement Transformation Fair[EB/OL]. . | |
15 | 于遵宏, 王辅臣. 煤炭气化技术[M]. 北京: 化学工业出版社, 2010. |
Yu Z H, Wang F C. Coal Gasification Technology [M]. Beijing: Chemical Industry Press, 2010. | |
16 | 化化网煤化工.鲁奇碎煤加压气化[EB/OL]. . |
Anychem.com. Lurgi pressurized gasifiers[EB/OL]. . | |
17 | Wen C Y, Chaung T Z. Entrainment coal gasification modeling[J]. Industrial & Engineering Chemistry Process Design and Development, 1979, 18(4): 684-695. |
18 | 娄彤, 张忠孝, 周志豪. 气流床气化炉高熔点煤气化反应模拟[J]. 热能动力工程, 2015, 30(3): 407-412, 494. |
Lou T, Zhang Z X, Zhou Z H. Simulation of the high ash melting point coal gasification reaction in a gas flow bed gasifier[J]. Journal of Engineering for Thermal Energy and Power, 2015, 30(3): 407-412, 494. | |
19 | Lin X, Liu Q Y, Liu Z Y, et al. The role of ash layer in syngas combustion in underground coal gasification[J]. Fuel Processing Technology, 2016, 143: 169-175. |
20 | 刘升, 郝英立. Texaco气流床煤气化炉内气固两相流动的数值模拟[J]. 东南大学学报(自然科学版), 2009, 39(4): 803-807. |
Liu S, Hao Y L. Numerical simulation of gas-solid two-phase flow in a Texaco entrained-flow coal gasifier[J]. Journal of Southeast University (Natural Science Edition), 2009, 39(4): 803-807. | |
21 | 杨俊宇, 李超, 代正华, 等. 基于停留时间分布的气流床气化炉通用网络模型[J]. 华东理工大学学报(自然科学版), 2015, 41(3): 287-292, 402. |
Yang J Y, Li C, Dai Z H, et al. General network model based on the residence time distribution for entrained-flow gasifier[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2015, 41(3): 287-292, 402. | |
22 | 王洋. 加压灰熔聚流化床粉煤气化技术的研究与开发[J]. 山西化工, 2002, 22(3): 4-7. |
Wang Y. Research and development of the pressurized ash agglomerating fluidized bed coal gasification technology[J]. Shanxi Chemical Industry, 2002, 22(3): 4-7. | |
23 | Lin X, Liu Q Y, Liu Z Y. Estimation of effective diffusion coefficient of O2 in ash layer in underground coal gasification by thermogravimetric apparatus[J]. Energies, 2018, 11(2): 460. |
24 | 王作棠, 王建华, 张朋, 等. 华亭煤地下气化与固定床气化指标对比研究[J]. 煤炭工程, 2013, 45(1): 99-101, 104. |
Wang Z T, Wang J H, Zhang P, et al. Study on index comparison between underground coal gasification in Huating mine and fixed bed coal gasification[J]. Coal Engineering, 2013, 45(1): 99-101, 104. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[9] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[10] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[11] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[12] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[13] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[14] | Chao KANG, Jinpeng QIAO, Shengchao YANG, Chao PENG, Yuanpeng FU, Bin LIU, Jianrong LIU, Aleksandrova TATIANA, Chenlong DUAN. Research progress on activation extraction of valuable metals in coal gangue [J]. CIESC Journal, 2023, 74(7): 2783-2799. |
[15] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 304
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 769
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||