CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1765-1778.DOI: 10.11949/0438-1157.20241157
• Energy and environmental engineering • Previous Articles Next Articles
Pengfei ZHAO1(), Ruomei QI2, Xinfeng GUO1, Hu FANG3, Lufei XU1, Xiao LI1, Jin LIN2,4
Received:
2024-10-18
Revised:
2024-12-17
Online:
2025-05-12
Published:
2025-04-25
Contact:
Pengfei ZHAO
赵鹏飞1(), 戚若玫2, 郭新锋1, 方虎3, 徐庐飞1, 李潇1, 林今2,4
通讯作者:
赵鹏飞
作者简介:
赵鹏飞(1990—),男,硕士,高级工程师,zhaopengfei.xxsy@sinopec.com
基金资助:
CLC Number:
Pengfei ZHAO, Ruomei QI, Xinfeng GUO, Hu FANG, Lufei XU, Xiao LI, Jin LIN. Analysis of hydrogen-to-oxygen impurities in a 1000 m3/h alkaline water electrolysis system[J]. CIESC Journal, 2025, 76(4): 1765-1778.
赵鹏飞, 戚若玫, 郭新锋, 方虎, 徐庐飞, 李潇, 林今. 千标方级碱性水电解制氢系统氧中氢杂质分析[J]. 化工学报, 2025, 76(4): 1765-1778.
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
PPS隔膜厚度dsep | 0.00085 m | r1 | 4.46×10-5 Ω·m2 |
PPS隔膜孔隙率ε | 0.59 | r2 | 6.89×10-9 Ω·m2/℃ |
PPS隔膜迂曲度τ | 1.5 | t1 | -0.015 m2/A |
隔膜渗透系数Ksep | 1.2×10-12 m2 | t2 | 2.00 m2·℃/A |
总传质系数拟合常数f | 9.82×10-5 | t3 | 15.24 m2·℃2/A |
隔膜两侧压差Δp | 49 Pa | d1 | -3.13×10-6 Ω·m2 |
含气率ϕ | 0.5 | d2 | 4.47×10-7 Ω·m2/bar |
Table 1 Parameters for the HTO calculation model
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
PPS隔膜厚度dsep | 0.00085 m | r1 | 4.46×10-5 Ω·m2 |
PPS隔膜孔隙率ε | 0.59 | r2 | 6.89×10-9 Ω·m2/℃ |
PPS隔膜迂曲度τ | 1.5 | t1 | -0.015 m2/A |
隔膜渗透系数Ksep | 1.2×10-12 m2 | t2 | 2.00 m2·℃/A |
总传质系数拟合常数f | 9.82×10-5 | t3 | 15.24 m2·℃2/A |
隔膜两侧压差Δp | 49 Pa | d1 | -3.13×10-6 Ω·m2 |
含气率ϕ | 0.5 | d2 | 4.47×10-7 Ω·m2/bar |
工况 | 工况描述 | 操作参数 | 测试负载范围 |
---|---|---|---|
1 | 基准工况 | 碱液温度70℃,浓度30%(质量),循环量72.5 m3/h,分离压力17.4 bar | 30%~110% |
2 | 降温测试 | 碱液温度42℃,浓度30%(质量),循环量72.5 m3/h,分离压力17.4 bar | 30%~80% |
3 | 降流量测试 | 碱液温度42℃,浓度30%(质量),循环量32.9 m3/h,分离压力17.4 bar | 30%~60% |
4 | 降压测试 | 碱液温度70℃,浓度30%(质量),循环量72.5 m3/h,分离压力15.3 bar | 30%~50% |
Table 2 Operating parameters for each working condition
工况 | 工况描述 | 操作参数 | 测试负载范围 |
---|---|---|---|
1 | 基准工况 | 碱液温度70℃,浓度30%(质量),循环量72.5 m3/h,分离压力17.4 bar | 30%~110% |
2 | 降温测试 | 碱液温度42℃,浓度30%(质量),循环量72.5 m3/h,分离压力17.4 bar | 30%~80% |
3 | 降流量测试 | 碱液温度42℃,浓度30%(质量),循环量32.9 m3/h,分离压力17.4 bar | 30%~60% |
4 | 降压测试 | 碱液温度70℃,浓度30%(质量),循环量72.5 m3/h,分离压力15.3 bar | 30%~50% |
碱液温度/℃ | LHTO1.5 | 碱液流量/(m3/h) | LHTO1.5 | 分离压力/MPa | LHTO1.5 | 碱液浓度/%(质量) | LHTO1.5 |
---|---|---|---|---|---|---|---|
80 | 39.6 | 90 | 44.6 | 1.8 | 39.2 | 35.0 | 31.2 |
70 | 38.4 | 75 | 39.2 | 1.5 | 34.7 | 32.5 | 34.2 |
60 | 37.2 | 60 | 34.1 | 1.2 | 30.2 | 30.0 | 38.4 |
50 | 36.4 | 45 | 29.4 | 0.9 | 25.6 | 27.5 | 43.3 |
40 | 35.8 | 30 | 24.8 | 0.6 | 20.9 | 25.0 | 48.8 |
Table 3 LHTO1.5 under different process parameters
碱液温度/℃ | LHTO1.5 | 碱液流量/(m3/h) | LHTO1.5 | 分离压力/MPa | LHTO1.5 | 碱液浓度/%(质量) | LHTO1.5 |
---|---|---|---|---|---|---|---|
80 | 39.6 | 90 | 44.6 | 1.8 | 39.2 | 35.0 | 31.2 |
70 | 38.4 | 75 | 39.2 | 1.5 | 34.7 | 32.5 | 34.2 |
60 | 37.2 | 60 | 34.1 | 1.2 | 30.2 | 30.0 | 38.4 |
50 | 36.4 | 45 | 29.4 | 0.9 | 25.6 | 27.5 | 43.3 |
40 | 35.8 | 30 | 24.8 | 0.6 | 20.9 | 25.0 | 48.8 |
实验编号 | 碱液温度 (T) | 碱液循环量(Q) | 分离压力(p) | 碱液浓度(M) | LHTO1.5 |
---|---|---|---|---|---|
1 | 80.00 | 90.00 | 1.80 | 0.35 | 0.3885 |
2 | 80.00 | 60.00 | 1.20 | 0.30 | 0.2857 |
3 | 80.00 | 30.00 | 0.60 | 0.25 | 0.1857 |
4 | 60.00 | 90.00 | 1.20 | 0.25 | 0.4140 |
5 | 60.00 | 60.00 | 0.60 | 0.35 | 0.1594 |
6 | 60.00 | 30.00 | 1.80 | 0.30 | 0.2410 |
7 | 40.00 | 90.00 | 0.60 | 0.30 | 0.1986 |
8 | 40.00 | 60.00 | 1.80 | 0.25 | 0.4128 |
9 | 40.00 | 30.00 | 1.20 | 0.35 | 0.1526 |
平均值1 | 0.287 | 0.334 | 0.347 | 0.234 | |
平均值2 | 0.271 | 0.286 | 0.284 | 0.242 | |
平均值3 | 0.255 | 0.193 | 0.181 | 0.337 | |
R值 | 0.032 | 0.141 | 0.166 | 0.103 | |
均方差 | 0.001 | 0.015 | 0.021 | 0.010 | |
F值 | 1 | 19.992 | 27.517 | 13.069 |
Table 4 Orthogonal design and results
实验编号 | 碱液温度 (T) | 碱液循环量(Q) | 分离压力(p) | 碱液浓度(M) | LHTO1.5 |
---|---|---|---|---|---|
1 | 80.00 | 90.00 | 1.80 | 0.35 | 0.3885 |
2 | 80.00 | 60.00 | 1.20 | 0.30 | 0.2857 |
3 | 80.00 | 30.00 | 0.60 | 0.25 | 0.1857 |
4 | 60.00 | 90.00 | 1.20 | 0.25 | 0.4140 |
5 | 60.00 | 60.00 | 0.60 | 0.35 | 0.1594 |
6 | 60.00 | 30.00 | 1.80 | 0.30 | 0.2410 |
7 | 40.00 | 90.00 | 0.60 | 0.30 | 0.1986 |
8 | 40.00 | 60.00 | 1.80 | 0.25 | 0.4128 |
9 | 40.00 | 30.00 | 1.20 | 0.35 | 0.1526 |
平均值1 | 0.287 | 0.334 | 0.347 | 0.234 | |
平均值2 | 0.271 | 0.286 | 0.284 | 0.242 | |
平均值3 | 0.255 | 0.193 | 0.181 | 0.337 | |
R值 | 0.032 | 0.141 | 0.166 | 0.103 | |
均方差 | 0.001 | 0.015 | 0.021 | 0.010 | |
F值 | 1 | 19.992 | 27.517 | 13.069 |
碱液温度/℃ | 小室电压/V | 电解槽电流/A | 制氢网电耗量/(kWh/kg) | 分离压力/MPa | 小室电压/V | 电解槽电流/A | 制氢网电耗量/(kWh/kg) |
---|---|---|---|---|---|---|---|
70(基准工况) | 1.622 | 2532.2 | 8.590 | 1.5 | 1.601 | 2290.5 | 7.738 |
60 | 1.671 | 2458.1 | 8.591 | 1.2 | 1.573 | 1990.1 | 6.726 |
50 | 1.723 | 2399.8 | 8.648 | 0.9 | 1.542 | 1690.8 | 5.788 |
40 | 1.778 | 2360.4 | 8.777 | 0.6 | 1.508 | 1380.1 | 4.924 |
Table 5 The impact of adjusting the electrolyte temperature and separation pressure on the grid power consumption of hydrogen production
碱液温度/℃ | 小室电压/V | 电解槽电流/A | 制氢网电耗量/(kWh/kg) | 分离压力/MPa | 小室电压/V | 电解槽电流/A | 制氢网电耗量/(kWh/kg) |
---|---|---|---|---|---|---|---|
70(基准工况) | 1.622 | 2532.2 | 8.590 | 1.5 | 1.601 | 2290.5 | 7.738 |
60 | 1.671 | 2458.1 | 8.591 | 1.2 | 1.573 | 1990.1 | 6.726 |
50 | 1.723 | 2399.8 | 8.648 | 0.9 | 1.542 | 1690.8 | 5.788 |
40 | 1.778 | 2360.4 | 8.777 | 0.6 | 1.508 | 1380.1 | 4.924 |
1 | 李洋洋, 邓欣涛, 古俊杰, 等. 碱性水电解制氢系统建模综述及展望[J]. 汽车工程, 2022, 44(4): 567-582. |
Li Y Y, Deng X T, Gu J J, et al. Comprehensive review and prospect of the modeling of alkaline water electrolysis system for hydrogen production[J]. Automotive Engineering, 2022, 44(4): 567-582. | |
2 | 王培灿, 万磊, 徐子昂, 等. 碱性膜电解水制氢技术现状与展望[J]. 化工学报, 2021, 72(12): 6161-6175. |
Wang P C, Wan L, Xu Z A, et al. Hydrogen production based-on anion exchange membrane water electrolysis: a critical review and perspective[J]. CIESC Journal, 2021, 72(12): 6161-6175. | |
3 | Brauns J, Turek T. Alkaline water electrolysis powered by renewable energy: a review[J]. Processes, 2020, 8(2): 248. |
4 | 陈梦萍, 任建兴, 李芳芹. 风光互补与电解水制氢系统负荷的协调稳定运行[J]. 太阳能学报, 2023, 44(3): 344-350. |
Chen M P, Ren J X, Li F Q. Coordinated and stable operation of wind solar complementarity and load of electrolytic water hydrogen production system[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 344-350. | |
5 | Haug P. Experimental and theoretical investigation of gas purity in alkaline water electrolysis[D]. Germany: Technische Universitaet Clausthal, 2019. |
6 | Hu S, Guo B, Ding S L, et al. A comprehensive review of alkaline water electrolysis mathematical modeling[J]. Applied Energy, 2022, 327: 120099. |
7 | Emam A S, Hamdan M O, Abu-Nabah B A, et al. A review on recent trends, challenges, and innovations in alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2024, 64: 599-625. |
8 | Trinke P, Haug P, Brauns J, et al. Hydrogen crossover in PEM and alkaline water electrolysis: mechanisms, direct comparison and mitigation strategies[J]. Journal of the Electrochemical Society, 2018, 165(7): F502-F513. |
9 | Martin A, Trinke P, Stähler M, et al. The effect of cell compression and cathode pressure on hydrogen crossover in PEM water electrolysis[J]. Journal of the Electrochemical Society, 2022, 169(1): 014502. |
10 | 夏杨红, 胡致远, 韦巍, 等. 可再生能源电解制氢宽范围运行控制策略[J]. 太阳能学报, 2024, 45(8): 34-43. |
Xia Y H, Hu Z Y, Wei W, et al. Wide range operation control strategy for electrolysis hydrogen production based on renewable energy[J]. Acta Energiae Solaris Sinica, 2024, 45(8): 34-43. | |
11 | Dogan D, Hecker B, Schmid B, et al. Experimental determination of stray currents in parallel operated cells exemplified on alkaline water electrolysis[J]. Electrochimica Acta, 2024, 500: 144767. |
12 | de Groot M T, Kraakman J, Garcia Barros R L. Optimal operating parameters for advanced alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2022, 47(82): 34773-34783. |
13 | Zhang T, Song L J, Yang F Y, et al. Research on oxygen purity based on industrial scale alkaline water electrolysis system with 50 Nm3 H2/h[J]. Applied Energy, 2024, 360: 122852. |
14 | Sánchez M, Amores E, Rodríguez L, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20332-20345. |
15 | 宁楠. 水电解制氢装置宽功率波动适应性研究[J]. 舰船科学技术, 2017, 39(11): 133-136. |
Ning N. Research on hydrogen generation system by water electrolysis under wide power fluctuation[J]. Ship Science and Technology, 2017, 39(11): 133-136. | |
16 | Sakas G, Ibáñez-Rioja A, Ruuskanen V, et al. Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4328-4345. |
17 | Sakas G, Ibáñez-Rioja A, Pöyhönen S, et al. Sensitivity analysis of the process conditions affecting the shunt currents and the SEC in an industrial-scale alkaline water electrolyzer plant[J]. Applied Energy, 2024, 359: 122732. |
18 | Sakas G, Ibáñez-Rioja A, Pöyhönen S, et al. Influence of shunt currents in industrial-scale alkaline water electrolyzer plants[J]. Renewable Energy, 2024, 225: 120266. |
19 | Rasten E. (Invited) shunt-currents in alkaline water-electrolyzers and renewable energy[J]. ECS Transactions, 2024, 113(9): 25-41. |
20 | Qi R M, Becker M, Brauns J, et al. Channel design optimization of alkaline electrolysis stacks considering the trade-off between current efficiency and pressure drop[J]. Journal of Power Sources, 2023, 579: 233222. |
21 | Haug P, Koj M, Turek T. Influence of process conditions on gas purity in alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2017, 42(15): 9406-9418. |
22 | Shoor S K, Walker R D, Gubbins K E. Salting out of nonpolar gases in aqueous potassium hydroxide solutions[J]. The Journal of Physical Chemistry, 1969, 73(2): 312-317. |
23 | Tham M J, Walker R D Jr, Gubbins K E. Diffusion of oxygen and hydrogen in aqueous potassium hydroxide solutions[J]. The Journal of Physical Chemistry, 1970, 74(8): 1747-1751. |
24 | Qi R M, Gao X P, Lin J, et al. Pressure control strategy to extend the loading range of an alkaline electrolysis system[J]. International Journal of Hydrogen Energy, 2021, 46(73): 35997-36011. |
25 | Haug P, Kreitz B, Koj M, et al. Process modelling of an alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2017, 42(24): 15689-15707. |
26 | Trinke P, Bensmann B, Hanke-Rauschenbach R. Current density effect on hydrogen permeation in PEM water electrolyzers[J]. International Journal of Hydrogen Energy, 2017, 42(21): 14355-14366. |
27 | Frey F. Experimental set-up for bubble behaviour in a high pressure alkaline electrolyte[D]. Argentina: Instituto Tecnológico de Buenos Aires, 2016. |
28 | Ruetschi P, Amlie R F. Solubility of hydrogen in potassium hydroxide and sulfuric acid. salting-out and hydration[J]. The Journal of Physical Chemistry, 1966, 70(3): 718-723. |
29 | Kraakman J T. Gas crossover in alkaline water electrolysis[D]. Netherlands: Eindhoven University of Technology, 2023. |
30 | Balej J. Water vapour partial pressures and water activities in potassium and sodium hydroxide solutions over wide concentration and temperature ranges[J]. International Journal of Hydrogen Energy, 1985, 10(4): 233-243. |
31 | Keçebaş A, Kayfeci M, Bayat M. Electrochemical hydrogen generation[M]//Solar Hydrogen Production. Academic Press, 2019: 299-317. |
32 | Burney H S, White R E. Predicting shunt currents in stacks of bipolar plate cells with conducting manifolds[J]. Journal of the Electrochemical Society, 1988, 135(7): 1609. |
33 | Divisek J, Jung R, Britz D. Potential distribution and electrode stability in a bipolar electrolysis cell[J]. Journal of Applied Electrochemistry, 1990, 20(2): 186-195. |
34 | Abdel Haleem A, Huyan J, Nagasawa K, et al. Effects of operation and shutdown parameters and electrode materials on the reverse current phenomenon in alkaline water analyzers[J]. Journal of Power Sources, 2022, 535: 231454. |
35 | Mitsushima S, Abdel Haleem A, Nagasawa K, et al. (Invited) leak current analysis of stop operation and its modeling for the development of bipolar alkaline water electrolyzer electrodes[J]. ECS Meeting Abstracts, 2022, MA2022-01(33): 1344. |
36 | Amores E, Rodríguez J, Carreras C. Influence of operation parameters in the modeling of alkaline water electrolyzers for hydrogen production[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13063-13078. |
37 | Ulleberg Ø. Modeling of advanced alkaline electrolyzers: a system simulation approach[J]. International Journal of Hydrogen Energy, 2003, 28(1): 21-33. |
38 | Qi R M, Li J R, Lin J, et al. Thermal modeling and controller design of an alkaline electrolysis system under dynamic operating conditions[J]. Applied Energy, 2023, 332: 120551. |
39 | 戚若玫. 面向可再生能源消纳的碱性电制氢系统建模与优化控制[D]. 北京: 清华大学, 2023. |
Qi R M. Modeling and optimal control of alkaline electric hydrogen production system for renewable energy consumption[D]. Beijing: Tsinghua University, 2023. | |
40 | Kikuchi K, Takeda H, Rabolt B, et al. Hydrogen particles and supersaturation in alkaline water from an alkali–ion–water electrolyzer[J]. Journal of Electroanalytical Chemistry, 2001, 506(1): 22-27. |
41 | Hodges A, Renz S, Lohmann-Richters F, et al. Critical analysis of published physical property data for aqueous potassium hydroxide. Collation into detailed models for alkaline electrolysis[J]. Journal of Chemical & Engineering Data, 2023, 68(7): 1485-1506. |
[1] | Junliang HUO, Zhiguo TANG, Zongjun QIU, Yuhua FENG, Xu JIANG, Leyi WANG, Yu YANG, Fanfan QIAO, Yifan HE, Jianliang YU. Experimental research on risk of freezing and plugging during CO2 pipeline venting under throttling effect [J]. CIESC Journal, 2025, 76(4): 1898-1908. |
[2] | Zhineng TAO, Tong QIU, Baoguo WANG. Steady-state modeling on hydrogen production by anion exchange membrane water electrolysis [J]. CIESC Journal, 2025, 76(4): 1711-1721. |
[3] | Jun WAN, Jiarui SONG, Chunhuang FAN, Lele WEI, Yina NIE, Lin LIU. Highly efficient hole transfer for promoting photocatalytic hydrogen production from alkaline methanol aqueous solution [J]. CIESC Journal, 2025, 76(3): 1064-1075. |
[4] | Jingrun LI, Siyu YANG, Qinghui LIU, An PAN, Jiayue WANG, Xiaogui FU, Hao YU. Analysis of multiple operating strategies for large-scale wind power coupled with thermal power for hydrogen production under various scenarios [J]. CIESC Journal, 2025, 76(3): 1191-1206. |
[5] | Mengfan YIN, Qian WANG, Tao ZHENG, Kui JI, Shaogui WANG, Hui GUO, Zhiqiang LIN, Rui ZHANG, Hui SUN, Haiyan LIU, Zhichang LIU, Chunming XU, Xianghai MENG, Yueping WANG. Process design of 10000 t industrial demonstration of hydrogen production from renewable energy electrolytic water - low temperature and low pressure ammonia synthesis [J]. CIESC Journal, 2025, 76(2): 825-834. |
[6] | Xiaohang ZHONG, Wei XU, Wen ZHANG, Li XU, Yuxin WANG. A critical review on the effects of Fe impurity on H2 production via alkaline water electrolysis [J]. CIESC Journal, 2025, 76(2): 519-531. |
[7] | Jinhao BAI, Xiaoping GUAN, Ning YANG. Analysis and optimization of flow characteristics in a filter-press water electrolyzer mastoid plate [J]. CIESC Journal, 2025, 76(2): 584-595. |
[8] | Ke ZHANG, Weijie REN, Mengna WANG, Kaifeng FAN, Liping CHANG, Jiabin LI, Tao MA, Jinping TIAN. Liquid-liquid mixing characteristics of Bunsen reaction products in microchannels [J]. CIESC Journal, 2025, 76(2): 623-636. |
[9] | Xinze LI, Shuangxing ZHANG, Guanyu REN, Rui HONG, Wenjing DU. Thermal performance of pulsating heat pipe for high power LED thermal management [J]. CIESC Journal, 2024, 75(S1): 126-134. |
[10] | Xiaoyu JIANG, Huanting LUO, Rui HONG, Wenjing DU. Specific heat of diol coolant determined by modulated differential scanning calorimetry [J]. CIESC Journal, 2024, 75(S1): 40-46. |
[11] | Junfeng WANG, Junjie ZHANG, Wei ZHANG, Jiale WANG, Shuyan SHUANG, Yadong ZHANG. Liquid-phase discharge plasma decomposition of methanol for hydrogen production: optimization of electrode configuration [J]. CIESC Journal, 2024, 75(9): 3277-3286. |
[12] | Xinyi LUO, Qiang XU, Yonglu SHE, Tengfei NIE, Liejin GUO. Study on bubble dynamic characteristics and mass transfer mechanism in photoelectrochemical water splitting for hydrogen production [J]. CIESC Journal, 2024, 75(9): 3083-3093. |
[13] | Jiaqi DING, Haitao LIU, Pu ZHAO, Xiangning ZHU, Xiaofang WANG, Rong XIE. Study on intelligent rolling prediction of the multiphase flows in coal-supercritical water fluidized bed reactor for hydrogen production [J]. CIESC Journal, 2024, 75(8): 2886-2896. |
[14] | Tianwen WANG, Su YAN, Mengyuan ZHAO, Tianrang YANG, Jianguo LIU. Mechanisms of chromium poisoning in solid oxide cell air electrodes and research advances in enhancing chromium-resistivity [J]. CIESC Journal, 2024, 75(6): 2091-2108. |
[15] | Xinzhe PEI, Zhuxing SUN, Yuxiang LIN, Chaoyang ZHANG, Yong QIAN, Xingcai LYU. Study of anode materials for electrocatalytic decomposition of liquid ammonia [J]. CIESC Journal, 2024, 75(5): 1843-1854. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 147
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 283
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||