化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 201-207.doi: 10.11949/0438-1157.20190492

• 流体力学与传递现象 • 上一篇    下一篇

含不凝气体蒸汽波节管内凝结特性研究

贾文华(),田茂诚(),张冠敏,魏民   

  1. 山东大学能源与动力工程学院,山东 济南 250061
  • 收稿日期:2019-05-09 修回日期:2019-05-15 出版日期:2019-09-06 发布日期:2019-09-06
  • 通讯作者: 田茂诚 E-mail:1085941792@qq.com;tianmc65@sdu.edu.cn
  • 作者简介:贾文华(1993—),女,硕士研究生,1085941792@qq.com
  • 基金资助:
    国家自然科学基金项目(51676114);山东省自然科学基金项目(ZR2016EEM26)

Study on condensation characteristics of vapor with non-condensable gas in corrugated tubes

Wenhua JIA(),Maocheng TIAN(),Guanmin ZHANG,Min WEI   

  1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2019-05-09 Revised:2019-05-15 Published:2019-09-06 Online:2019-09-06
  • Contact: Maocheng TIAN E-mail:1085941792@qq.com;tianmc65@sdu.edu.cn

摘要:

通过数值模拟,研究了波节结构、空气含量及Reynolds数Re对含空气的水蒸气波节管内凝结特性的影响,并与圆形换热管内的情况进行了对比。模拟结果表明:空气含量增加,波节管壁面平均传热系数减小;波节管内流体流动和换热过程均呈现振荡波动;波节高度增加,壁面平均传热系数先增加后降低,在波节高度0.032 m达到峰值,而摩擦系数一直增加;波节间距减小,波节宽度增加,壁面平均传热系数及摩擦系数均增大;波节高度对波节管内流动和换热影响均大于波节宽度和波节间距。

关键词: 数值模拟, 波节管, 不凝气体, 管内冷凝, 气液两相流, 混合物

Abstract:

This paper presents a numerical investigation on the condensation characteristics of vapor with non-condensable gas in corrugated tubes. Several 2D examples with different corrugated structures, air contents and Reynolds numbers are studied and compared. Results show that along with the increase of air content, the wall average heat transfer coefficient decreases in the corrugated tube. The oscillation of fluid flow and heat transfer is generated due to the corrugated structure. With the increasing of wave height, the skin friction coefficient increased, and the wall average heat transfer coefficient first increased, and then decreased, the maximum of wall average heat transfer coefficient in this paper is in 0.032 m. The influence of wave height on the flow and heat transfer characteristics is more obvious than the width of the wave node and the space between two waves. The effect of inlet fluid flow-rate on the skin friction coefficient is also evaluated and discussed to provide some guidelines for future engineering applications.

Key words: numerical simulation, corrugated tubes, non-condensable gas, condensation inside tubes, gas-liquid flow, mixtures

中图分类号: 

  • TK 124

图1

物理模型"

表1

模型具体尺寸"

管号

换热管

内径/m

波节高度/m

换热管

长度/m

波节间距s1/m波节宽度s2/m
1#0.02500.275
2#0.0250.0030.2750.0050.015
3#0.0250.050.2750.0050.015
4#0.0250.0070.2750.0050.015
5#0.0250.0090.2750.0050.015
6#0.0250.0090.2570.0030.015
7#0.0250.0090.2930.0070.015
8#0.0250.0090.2550.0050.013
9#0.0250.0090.2950.0050.017

图2

对比模型"

图3

换热管中心线温度"

图4

不同换热管结构内壁面平均传热系数随空气含量变化"

图5

不同Re下壁面平均传热系数随换热管结构的变化"

图6

不同结构换热管内流体速度分布云图"

图7

不同Re下壁面平均传热系数随波节间距及波节宽度的变化"

图8

5#、7#和9#换热管局部位置流体流速的变化"

图9

不同波节结构下壁面摩擦系数随Re的变化"

1 OthmerD F. The condensation of steam[J]. Industrial and Engineering Chemistry, 1929, 21(6): 576-583.
2 王补宣, 杜小泽. 细竖管内流动凝结液膜的稳定性分析[J]. 化工学报, 2000, 51(1): 7-11.
WangB X, DuX Z. Stability analysis of condensation liquid film in fine vertical tube [J]. Journal of Chemical Industry and Engineering (China), 2000, 51(1): 7-11.
3 SongW M, MengJ A, LiZ X. Optimization of flue gas convective heat transfer with condensation in a rectangular channel[J]. Chinese Science Bulletin, 2011, 56(3): 263-268.
4 HuangJ, ZhangJ, WangL. Review of vapor condensation heat and mass transfer in the presence of non-condensable gas[J]. Applied Thermal Engineering, 2015, 89: 469-484.
5 王四芳, 兰忠, 王爱丽, 等. 超疏水表面蒸汽及含不凝气蒸汽滴状冷凝传热实验分析[J]. 化工学报, 2010, 61(3): 607-611.
WangS F, LanZ, WangA L, et al. Dropwise condensation of steam and steam-air mixture on super-hydrophobic surfaces [J]. CIESC Journal, 2010, 61 (3): 607-611.
6 周兴东, 马学虎, 兰忠, 等. 滴状冷凝强化含不凝气的蒸气冷凝传热机制[J]. 化工学报, 2007, 58(7): 1619-1625.
ZhouX D, MaX H, LanZ, et al. Mechanism of dropwise condensation heat transfer enhancement in presence of noncondensable gas [J]. Journal of Chemical Industry and Engineering (China), 2007, 58(7): 1619-1625.
7 ChantanaC, KumarS. Experimental and theoretical investigation of air-steam condensation in a vertical tube at low inlet steam fractions[J]. Applied Thermal Engineering, 2013, 54(2): 399-412.
8 LiJ D. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 708-721.
9 YinZ, WenJ, WuY, et al. Effect of non-condensable gas on laminar film condensation of steam in horizontal minichannels with different cross-sectional shapes[J]. International Communications in Heat and Mass Transfer, 2016, 70: 127-131.
10 KekaulaK, ChenY, MaT, et al. Numerical investigation of condensation in inclined tube air-cooled condensers[J]. Applied Thermal Engineering, 2017, 118(Complete): 418-429.
11 吴峰. 波纹管内流动与传热三维数值模拟[J]. 石油化工设备, 2009, 38(1): 22-26.
WuF. Three-dimensional numerical simulation of flow and heat transfer in corrugated tubes [J]. Petrochemical Equipment, 2009, 38(1): 22-26.
12 吴峰. 空气外掠波纹管束强化传热规律数值计算[J]. 热能动力工程, 2009, 24(4): 452-456.
WuF. Numerical calculation of enhanced heat transfer law of air external swept corrugated bundles [J]. Thermal Energy and Power Engineering, 2009, 24(4): 452-456.
13 俞接成, 杜晓萌. 波纹管层流传热与流动的三维数值模拟[J]. 北京石油化工学院学报, 2011, 19(4): 11-16.
YuJ C, DuX M. Three-dimensional numerical simulation of laminar heat transfer and flow in corrugated tubes[J]. Journal of Beijing Institute of Petrochemical Technology, 2011, 19(4): 11-16.
14 王大成, 王二利, 罗小平. 波纹管结构参数对传热性能影响[J]. 石油化工设备, 2014, 43(1): 14-17.
WangD C, WangE L, LuoX P. Influence of structural parameters of corrugated tubes on heat transfer performance [J]. Petrochemical Equipment, 2014, 43(1): 14-17.
15 WangW, ZhangY, LiB, et al. Numerical investigation of tube-side fully developed turbulent flow and heat transfer in outward corrugated tubes[J]. International Journal of Heat and Mass Transfer, 2018, 116: 115-126.
16 肖金花, 钱才富, 黄志新.波纹管传热强化效果与机理研究[J].化学工程, 2007, (1): 12-15.
XiaoJ H, QianC F, HuangZ X. Study on heat transfer enhancement effect and mechanism of corrugated tubes [J]. Chemical Engineering (China), 2007, (1): 12-15.
17 王补宣, 杜小泽. 细圆管内流动凝结换热的实验研究[J]. 工程热物理学报, 2000, 21(3): 324-328.
WangB X, DuX Z. Experimental study on flow condensation heat transfer in thin circular tubes [J]. Journal of Engineering Thermophysics, 2000, 21(3): 324-328.
18 ChengF, YinZ, DaiR, et al. Condensation heat transfer characteristic of high-speed steam/nitrogen mixture in horizontal rectangular channel[J]. Experimental Thermal and Fluid Science, 2016, 78(S0): 292-300.
19 YiQ J, TianM C, YanW J, et al. Visualization study of the influence of non-condensable gas on steam condensation heat transfer[J]. Applied Thermal Engineering, 2016, 106: 13-21.
20 GuH F, ChenQ, WangH J, et al. Condensation of a hydrocarbon in the presence of a non-condensable gas: heat and mass transfer[J]. Applied Thermal Engineering, 2015, 91: 938-945.
21 AroonratK, WongwisesS. Experimental study on two-phase condensation heat transfer and pressure drop of R-134a flowing in a dimpled tube[J]. International Journal of Heat and Mass Transfer, 2016, 106(S0): 437-448.
22 曾敏, 王秋旺, 屈治国, 等. 波纹管内强制对流换热与阻力特性的实验研究[J].西安交通大学学报, 2002, (3): 237-240.
ZengM, WangQ W, QuZ G, et al. Experimental study on the pressure drop and heat transfer characteristics in corrugated tubes [J]. Journal of Xi’an Jiaotong University, 2002, (3): 237-240.
23 仝潘, 范广铭, 孙中宁, 等. 竖直波节管外含空气蒸汽冷凝传热特性研究[C]//中国核学会核能动力分会反应堆热工流体专业委员会.第十四届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2015年度学术年会论文集. 北京: 中国核学会核能动力分会反应堆热工流体专业委员会, 2015.
TongP, FanG M, SunZ N, et al. Study on the condensation and heat transfer characteristics of vapor-air outside the vertical corrugated tubes[C]//Steam Condensation Heat Transfer Characteristics Research of Nuclear Power Branch of China Nuclear Society Reactor Thermal Fluid Professional Committee. The 14th National Conference on Reactor Thermal Fluid and Key Laboratory of Nuclear Reactor Thermal Hydraulic Technology in 2015 Academic Conference. Beijing: Proceedings of China Nuclear Society Nuclear Power Reactor Thermal Fluid Professional Committee of Chapter, 2015.
24 YangD, SunB, LiH, et al. Experimental study on the heat transfer and flow characteristics of nanorefrigerants inside a corrugated tube[J]. International Journal of Refrigeration, 2015, 56: 213-223.
25 LiX W, MengJ A, GuoZ Y. Turbulent flow and heat transfer in discrete double incline ribs tube[J].Int. J. Heat Mass Transfer, 2009, 52(3/4): 962-970.
26 SongW M, MengJ A, LiZ X. Optimization of flue gas convective heat transfer with condensation in a rectangular channel[J]. Chinese Science Bulletin, 2011, 56(3): 263-268.
27 鹿磊.一种高精度简单的湿空气物性经验公式[J]. 中国科技信息, 2011, (12): 38-40.
LuL.A high precision empirical formula for simple moist air properties[J]. Technology Information of China, 2011, (12): 38-40.
28 KuhnS Z, SchrockV E, PetersonP F. An investigation of condensation from steam–gas mixtures flowing downward inside a vertical tube[J]. Nuclear Engineering and Design, 1997, (177): 53-69.
[1] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[2] 黄锟腾, 陈健勇, 陈颖, 罗向龙, 梁颖宗. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41.
[3] 海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309.
[4] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[5] 候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370.
[6] 宋粉红, 王伟, 陈奇成, 范晶. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381.
[7] 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389.
[8] 陈建业, 丁月, 吴钊, 禹云星, 邵双全. 带涡流管的新型加氢流程数值研究[J]. 化工学报, 2021, 72(S1): 461-466.
[9] 张经伟, 刘永阳, 刘东, 邵国栋, 李元鲁, 刘舫辰, 杜文静. 竖直壁面上含SO2气体的锅炉烟气的低温冷凝特性[J]. 化工学报, 2021, 72(S1): 475-481.
[10] 燕子腾, 吴国明, 庄大伟, 丁国良, 曹法立, 孟建军. 用于微通道换热器的循环流道分流器的设计方法与应用效果[J]. 化工学报, 2021, 72(S1): 77-83.
[11] 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139.
[12] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
[13] 郝刚卫, 刘晔, 晏刚, 鱼剑琳. 串并联风冷冰箱性能优化[J]. 化工学报, 2021, 72(S1): 178-183.
[14] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[15] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙宝芝,淮秀兰,姜任秋,刘登瀛. 声空强化渗透脱水过程质扩散研究[J]. CIESC Journal, 2005, 13(1): 13 -17 .
[2] 闫平祥, 蓝兴英, 徐春明, 高金森. RFCC沉降器内油浆气化率的初步研究[J]. CIESC Journal, 2007, 15(3): 315 -319 .
[3] 徐欧官, 苏宏业, 计建炳, 金晓明, 褚健. 甲苯歧化与C9芳烃烷基转移反应动力学模型和模拟分析[J]. CIESC Journal, 2007, 15(3): 326 -332 .
[4] 周彩荣, 石晓华, 王海峰, 高玉国, 蒋登高. 反式-1,2-环基二醇+乙酸丁酯+水三元体系固液相平衡[J]. CIESC Journal, 2007, 15(3): 449 -452 .
[5] 张玉玲, 黄君礼, 程志辉, 杨士林. 微波溶剂法合成天冬氨酸-谷氨酸共聚物研究[J]. CIESC Journal, 2007, 15(3): 458 -462 .
[6] 李英, 都健, 姚平经. 多杂质水网络设计和零排放[J]. CIESC Journal, 2003, 11(5): 559 -564 .
[7] 淮秀兰, 刘登瀛, SHIGERU Koyama, BIDYUT Baran Saha. 对撞流干燥的实验与理论研究[J]. CIESC Journal, 2003, 11(1): 42 -48 .
[8] 樊君, 胡晓云, 大矢晴彦, 上田义人, 山胁正也, 相原雅彦, 竹内隆, 根岸洋一. Pd-SiO2复合膜的氢气选择渗透特性[J]. CIESC Journal, 2002, 10(5): 580 -586 .
[9] 宋莹, 陈增强, 袁著祉. 基于Tent混沌优化的神经网络预测控制[J]. CIESC Journal, 2007, 15(4): 539 -544 .
[10] 刘天庆, 王兴海. Fouling Induction Period of CaCO3 on Heated Surface[J]. CIESC Journal, 1999, 7(3): 230 -236 .