化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 237-243.doi: 10.11949/0438-1157.20190509

• 流体力学与传递现象 • 上一篇    下一篇

管壳式相变储热器性能快速预测研究

徐阳1,2(),郑章靖1,2(),李明佳3   

  1. 1. 中国矿业大学电气与动力工程学院,江苏 徐州 221116
    2. 中国矿业大学江苏省高效储能技术与装备工程实验室,江苏 徐州 221116
    3. 西安交通大学能源与动力工程学院,热流科学与工程教育部重点实验室,陕西 西安 710049
  • 收稿日期:2019-05-15 修回日期:2019-06-11 出版日期:2019-09-06 发布日期:2019-09-06
  • 通讯作者: 郑章靖 E-mail:xuyangcumt@cumt.edu.cn;zhengzj@ cumt.edu.cn
  • 作者简介:徐阳(1989—),女,博士,讲师,xuyangcumt@cumt.edu.cn
  • 基金资助:
    国家自然科学基金项目(51806237);江苏省自然科学基金项目(BK20170283);中国博士后科学基金项目(2019M652002)

Performance prediction of shell-and-tube latent heat thermal energy storage unit

Yang XU1,2(),Zhangjing ZHENG1,2(),Mingjia LI3   

  1. 1. School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
    2. Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
    3. Key Laboratory of Thermo–Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2019-05-15 Revised:2019-06-11 Published:2019-09-06 Online:2019-09-06
  • Contact: Zhangjing ZHENG E-mail:xuyangcumt@cumt.edu.cn;zhengzj@ cumt.edu.cn

摘要:

为了构建一种具有普适性的完全熔化时间预测公式,引入一种无量纲储热时间的概念,定义为实际储热时间与基准储热时间的比值。基准储热时间通过静态近似法获得,可以基本反映完全熔化时间与其影响参数的非线性关系,有效降低了无量纲储热时间拟合关联式的非线性度,并扩大了其适用范围。针对套管式固液相变储热器,通过数值模拟方法分析了Stefan数、无量纲长度以及外内径比率三个参数对无量纲储热时间的影响规律,并拟合了关联式。结果显示,所构建的经验关联式具有较好的应用范围和预测准确度;在考虑的参数范围内,快速预测结果的误差可以控制在10%以内。所提出的无量纲储热时间及其关联式构建方法可推广应用于其他固液相变储热器。

关键词: 相变, 传热, 数值模拟, 管壳式相变储热器, 无量纲储热时间

Abstract:

In order to construct a universal prediction method for complete melting time, a concept of dimensionless heat storage time is introduced, which is defined as the ratio of actual melting time to referenced melting time. The referenced melting time obtained by static approximation method can basically reflect the non-linear relationship between the melting time and its influencing parameters, which effectively reduces the non-linearity of dimensionless melting time fitting correlation and enlarges its application scope. The influence of Stefan number, dimensionless length and ratio of outer diameter to inner diameter on dimensionless melting time of shell-and-tube latent heat thermal energy storage unit was analyzed by numerical simulation method, and the correlation equation was fitted. The results show that the empirical correlation has a wide application range and high prediction accuracy. Within the parameters considered in this paper, the error of fast prediction results is no more than 10%. The dimensionless heat storage time and its correlation method proposed in this paper can be popularized to other forms of solid-liquid phase change thermal energy storage devices.

Key words: phase change, heat transfer, numerical simulation, shell-and-tube latent heat thermal energy storage unit, dimensionless melting time

中图分类号: 

  • TK 124

图1

计算区域"

图2

Stefan相变模型验证结果"

图3

无量纲储热时间随Stefan数的变化"

图4

无量纲储热时间随外内径比率Dout/Din的变化"

图5

无量纲储热时间随无量纲储热器长度L/Din的变化"

图6

无量纲储热时间关联式随Ste的验证结果"

图7

无量纲储热时间关联式随无量纲长度L/Din的验证结果"

1 ZhengZ J, XuY. A novel system for high-purity hydrogen production based on solar thermal cracking of methane and liquid-metal technology: thermodynamic analysis[J]. Energy Conversion and Management, 2018, 157: 562-574.
2 ZhengZ J, HeY L, LiY S. An entransy dissipation-based optimization principle for solar power tower plants[J]. Science China: Technological Sciences, 2014, 57: 773-783.
3 熊亚选, 栗博, 吴玉庭, 等. 添加纳米 SiO2 对四元溴化盐相变热物性的影响[J]. 化工学报, 2017, 68(4):1299-1305.
XiongY X, LiB, WuY T, et al. Improving phase change thermal properties of quaternary bromides by adding SiO2 nanoparticle[J]. CIESC Journal, 2017, 68(4): 1299-1305.
4 LiuM, SamanW, BrunoF. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2118-2132.
5 MedranoM, YilmazM O, NoguésM, et al. Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems[J]. Applied Energy, 2009, 86(10): 2047-2055.
6 YangX H, LuZ, BaiQ, et al. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: role of annular fins[J]. Applied Energy, 2017, 202: 558-570.
7 ZhuZ Q, HuangY K, HuN, et al. Transient performance of a PCM-based heat sink with a partially filled metal foam: effects of the filling height ratio[J]. Applied Thermal Engineering, 2018,128: 966-972.
8 TaoY B, YouY, HeY L. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material[J]. Applied Thermal Engineering, 2016, 93: 476-485.
9 WuW, ZhangS L, WangS F. A novel lattice Boltzmann model for the solid-liquid phase change with the convection heat transfer in the porous media[J]. International Journal of Heat and Mass Transfer, 2017, 104: 675-687.
10 YangJ, YangL, XuC, et al. Experimental study on enhancement of thermal energy storage with phase-change material[J]. Applied Energy, 2016, 169: 164-176.
11 XuY, RenQ, ZhengZ J, et al. Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media[J]. Applied Energy, 2017, 193: 84-95.
12 XuY, LiM J, ZhengZ J, et al. Melting performance enhancement of phase change material by a limited amount of metal foam: configurational optimization and economic assessment[J]. Applied Energy, 2018, 212: 868-880.
13 ZhengZ J, XuY, LiM J. Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance[J]. Applied Energy, 2018, 220: 447-454.
14 XuH J, ZhaoC Y. Thermal performance of cascaded thermal storage with phase-change materials (PCMs)(Ⅰ): Steady cases[J]. International Journal of Heat and Mass Transfer, 2017, 106: 932-944.
15 YuanY P, CaoX L, XiangB, et al. Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage[J]. Solar Energy, 2016, 136: 365-378.
16 KamkariB, ShokouhmandH. Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins[J]. International Journal of Heat and Mass Transfer, 2014, 78: 839-851.
17 RathodM K, BanerjeeJ. Thermal performance of a phase change material-based latent heat thermal storage unit[J]. Heat Transfer—Asian Research, 2014, 43(8): 706-719.
18 RathodM K, BanerjeeJ. Development of correlation for melting time of phase change material in latent heat storage unit[J]. Energy Procedia, 2015, 75: 2125-2130.
19 VollerV R, CrossM. Estimating the solidification/melting times of cylindrically symmetric regions[J]. International Journal of Heat and Mass Transfer, 1981, 24(9): 1457-1462.
20 SolomonA D. Melt time and heat flux for a simple PCM body[J]. Solar Energy, 1979, 22(3): 251-257.
21 RileyD S, SmithF T, PootsG. The inward solidification of spheres and circular cylinders[J]. International Journal of Heat and Mass Transfer, 1974, 17(12): 1507-1516.
22 HoC J, ViskantaR. Heat transfer during melting from an isothermal vertical wall[J]. Journal of Heat Transfer, 1984, 106(1): 12-19.
23 ZhangY, ChenZ, WangQ, et al. Melting in an enclosure with discrete heating at a constant rate[J]. Experimental Thermal and Fluid Science, 1993, 6(2): 196-201.
24 BilirL, IlkenZ. Total solidification time of a liquid phase change material enclosed in cylindrical/spherical containers[J]. Applied Thermal Engineering, 2005, 25(10): 1488-1502.
25 BeluskoM, TayN, LiuM, et al. Effective tube-in-tank PCM thermal storage for CSP applications(Ⅰ): Impact of tube configuration on discharging effectiveness[J]. Solar Energy, 2016, 139: 733-743.
26 TayN H S, BrunoF, BeluskoM. Experimental validation of a CFD and an ε-NTU model for a large tube-in-tank PCM system[J]. International Journal of Heat and Mass Transfer, 2012, 55: 5931-5940.
27 DittusF, BoelterL. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12: 3-22.
28 AlexiadesV. Mathematical Modeling of Melting and Freezing Processes[M]. Boca Raton: CRC Press, 1993: 145.
29 ZhengZ J, LiM J, HeY L. Thermal analysis of solar central receiver tube with porous inserts and non-uniform heat flux[J]. Applied Energy, 2017, 185: 1152-1161.
30 ZhengZ J, LiM J, HeY L. Optimization of porous insert configurations for heat transfer enhancement in tubes based on genetic algorithm and CFD[J]. International Journal of Heat and Mass Transfer, 2015, 87: 376-379.
31 ZhengZ J, XuY, HeY L. Thermal analysis of a solar parabolic trough receiver tube with porous insert optimized by coupling genetic algorithm and CFD[J]. Science China: Technological Sciences, 2016, 59(10): 1475-1485.
32 ZhengZ J, HeY, HeY L, et al. Numerical optimization of catalyst configurations in a solar parabolic trough receiver–reactor with non-uniform heat flux[J]. Solar Energy, 2015,122:113-125.
33 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001:220.
TaoW Q. Numerical Heat Transfer[M]. 2nd ed.Xi’an: Xi’an Jiaotong University Press, 2001:220.
34 杨世铭, 陶文铨. 传热学[M]. 2版. 北京: 高等教育出版社, 1998:168.
YangS M, TaoW Q. Heat Transfer[M]. 2nd ed.Beijing: Higher Education Press, 1998:168.
[1] 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126.
[2] 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139.
[3] 马秋鸣, 聂磊, 潘权稳, 山訸, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177.
[4] 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
[5] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[6] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[7] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[8] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[9] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[10] 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301.
[11] 海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309.
[12] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[13] 顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335.
[14] 王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355.
[15] 候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 祝贵兵, 彭永臻, 王淑莹, 左金龙, 王亚宜, 郭建华. 分段进水生物脱氮工艺稳态模型的开发与试验评价[J]. CIESC Journal, 2007, 15(3): 411 -417 .
[2] 司徒粤, 胡剑峰, 黄洪, 傅和青, 曾汉维, 陈焕钦. 新型环氧大豆油增韧酚醛树脂的合成与性质[J]. CIESC Journal, 2007, 15(3): 418 -423 .
[3] 章亚东, 高晓蕾, 陈霞, 王朝进, 蒋登高. 聚苯乙烯负载钼(Ⅵ)配合物的合成、表征及其催化环己烯环氧化活性研究[J]. CIESC Journal, 2003, 11(3): 318 -325 .
[4] 张敏卿, 范敏英, 余国琮, 王树立. Turbulent Liquid Flow in a Gas-Liquid Bubble Column[J]. CIESC Journal, 1999, 7(3): 189 -195 .
[5] 刘文彬, 李以圭, 陆九芳. Comparison of perturbation theory and mean spherical approximation based on molecular
simulation data
[J]. CIESC Journal, 1999, 7(1): 10 -19 .
[6] 骆广生, 吕阳成, 朱慎林, 戴猷元. Recovery of Dyestuffs from Dilute Solution withTwo-phase Electrophoresis[J]. CIESC Journal, 2000, 8(1): 80 -84 .
[7] 罗正鸿, 曹志凯, 苏耀堂. 丙烯聚合的Monte Carlo模拟(Ⅰ)活性杂质对丙烯聚合的影响[J]. CIESC Journal, 2006, 14(2): 194 -199 .
[8] 陈欢林, 朱长乐. 醇脱水连续渗透汽化分离过程设计[J]. CIESC Journal, 2000, 8(4): 294 -299 .
[9] 钟卫鸿,岑沛霖. 黑曲霉Aspergillus niger P-6021浆态发酵常山胡柚皮渣产果胶霉[J]. CIESC Journal, 2005, 13(4): 510 -515 .
[10] 林东强, 姚善泾, 梅乐和, 朱自强. 固定化金属离子亲和分配用的亚胺二乙酸-聚乙二醇偶联物的制备[J]. CIESC Journal, 2000, 8(4): 310 -314 .