化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 244-249.doi: 10.11949/0438-1157.20190520

• 流体力学与传递现象 • 上一篇    下一篇

不同结构下两弯头脉动热管的数值模拟

蒋二辉1(),张东伟1(),周俊杰1,沈超2,魏新利1   

  1. 1. 郑州大学化工与能源学院, 热能系统节能技术与装备教育部工程研究中心,河南 郑州 450001
    2. 郑州大学土木工程学院,河南 郑州 450001
  • 收稿日期:2019-05-19 修回日期:2019-05-23 出版日期:2019-09-06 发布日期:2019-09-06
  • 通讯作者: 张东伟 E-mail:zzujeh@outlook.com;zhangdw@zzu.edu.cn
  • 作者简介:蒋二辉(1993—),男,硕士研究生,zzujeh@outlook.com
  • 基金资助:
    国家自然科学基金项目(51706208);河南省科技攻关项目(192102310244)

Numerical simulation of pulsating heat pipes with two-bends in different structures

Erhui JIANG1(),Dongwei ZHANG1(),Junjie ZHOU1,Chao SHEN2,Xinli WEI1   

  1. 1. Research Center on the Technology and Equipments for Energy Saving in Thermal Energy System of MOE, School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, China
    2. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2019-05-19 Revised:2019-05-23 Published:2019-09-06 Online:2019-09-06
  • Contact: Dongwei ZHANG E-mail:zzujeh@outlook.com;zhangdw@zzu.edu.cn

摘要:

脉动热管以其独特的换热优势,在电子器件的散热领域取得了卓越的成效。因此提出一种带有锯齿波纹段的两弯头新型脉动热管,并采用数值方法研究了波纹段的布置位置对脉动热管运行性能的影响。结果表明新结构脉动热管的传热性能和启动特性都优于传统结构的脉动热管。此外,当锯齿段布置在热管两端时,具有较短的启动时间,尤其位于冷凝段时锯齿型脉动热管具有更低的温差和最大的换热量。因此可以认为当波纹段位于冷凝段时,新结构脉动热管具有最优的运行特性。

关键词: 传质, 多相流, 数值模拟, 优化, 相变, 脉动热管

Abstract:

The pulsating heat pipe (PHP) has achieved remarkable results in heat dissipation field of electronic devices for its unique advantages in heat transfer. Therefore, this paper proposed a novel saw-tooth corrugated structure PHP with two-bends. Besides, the impact of arrangement position of saw-tooth corrugated section on the operation performance of PHP was investigated by numerical simulation. The results indicate that the heat transfer performance and start-up characters of saw-tooth corrugated PHP are much better than that with traditional structure of PHP. Additionally, the PHP has the lowest start-up timing with the serrated corrugated section in both ends of the heat pipe. Especially, the novel structure PHP with serrated corrugated part in condensation section has lower thermal resistance and higher heat exchange. Thus, it could conclude that the novel saw-tooth corrugated PHP has the best operation performance as new structure is arranged in condensation section.

Key words: mass transfer, multiphase flow, numerical simulation, optimization, phase change, pulsating heat pipe

中图分类号: 

  • TK 174.2

图1

热管结构示意图"

图2

不同结构气相云图"

图3

不同结构蒸发端平均温度变化"

图4

不同结构温差"

图5

不同结构换热效率"

1 何江, 苗建印, 张红星, 等. 航天器深低温热管技术研究现状及发展趋势[J]. 真空与低温, 2018, 24(1): 1-8.
HeJ, MiaoJ Y, ZhangH X, et al. Current status and development trend of cryogenic heat pipe technologies in spacecraft[J]. Vacuum and Cryogenics, 2018, 24(1): 1-8.
2 AkachiH, MiyazakiY. Stereo type heat lane heat sink[C]//10th International Heat Pipe Conference. Germany, 1997.
3 KhandekarS, GrollM, LuckchouraV. An introduction to pulsating heat pipe[J]. Electronics Cooling, 2003, 9 (2): 38-41.
4 XuJ L, LiY X, WongT Y. High speed flow visualization of a closed loop pulsating heat pipe[J]. International Journal of Heat Mass Transfer, 2005, (48): 3338-3351.
5 ShafiiM B, FaghriA, ZhangY. Thermal modeling of unlooped and looped pulsating heat pipe[J]. Journal of Heat Transfer, 2001, 123(6): 1159-1172.
6 李孝军, 屈健, 韩新月, 等. 微槽道脉动热管的启动及传热特性[J]. 化工学报, 2016, 67(6): 2263-2270.
LiX J, QuJ, HanX Y, et al. Start-up and heat transfer performance of micro-grooved oscillating heat pipe[J]. CIESC Journal, 2016, 67(6): 2263-2270.
7 孙芹, 屈健, 袁建平. 等截面和变截面通道硅基微型脉动热管传热特性比较[J]. 化工学报, 2017, 68(5): 1803-1810.
SunQ, QuJ, YuanJ P. Heat transfer performance comparison of silicon-based micro oscillating heat pipes with and without expanding channels[J]. CIESC Journal, 2017, 68(5): 1803-1810.
8 HanH, CuiX Y, ZhuY, et al. A comparative study of the behavior of working fluids and their properties on the performance of pulsating heat pipes(PHP)[J]. International Journal of Thermal Science, 2014, (82): 138-147.
9 屈健, 彭友权, 孙芹. 带平板蒸发器的紧凑型三维脉动热管传热特性[J]. 化工学报, 2018, 69(7): 2899-2907.
QuJ, PengY Q, SunQ. Heat transfer performance of three-dimensional oscillating heat pipe with flat-plate evaporator[J]. CIESC Journal, 2018, 69(7): 2899-2907.
10 郑开明, 徐荣吉, 王瑞祥, 等. 工质表面张力和黏度对脉动热管启动及传热热阻的影响[J]. 化工进展, 2017, 36(8): 2816-2821.
ZhengK M, XuR J, WangR X, et al. Influence of surface tension and viscosity on the start-up time and thermal resistance of pulsating heat pipe[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2816-2821.
11 朱悦, 崔晓钰, 韩华, 等. 水、丙酮混合工质振荡热管传热性能[J]. 化工学报, 2014, 65(8): 2940-2947.
ZhuY, CuiX Y, HanH, et al. Heat transfer performance of pulsating heat pipes with water-acetone mixtures[J]. CIESC Journal, 2014, 65(8): 2940-2947.
12 KangS W, WangY C, LiuY C, et al. Visualization and thermal resistance measurements for a magnetic nanofluid pulsating heat pipe[J]. Applied Thermal Engineering, 2017, (126): 1044-1050.
13 纪玉龙, 庾春荣, 张庆振, 等. 表面浸润程度对脉动热管传热性能的影响[J]. 化工学报, 2017, 68(S1): 141-149.
JiY L, YuC R, ZhangQ Z, et al. Effect of surface wettability on heat transfer performance of oscillating heat pipe[J]. CIESC Journal, 2017, 68(S1): 141-149.
14 LiangG, MudawarI. Review of pool boiling enhancement by surface modification[J]. International Journal of Heat and Mass Transfer, 2019, 128: 892-933.
15 TakataY, HidakaS, CaoJ M, et al. Effect of surface wettability on boiling and evaporation[J]. Energy, 2005, (30): 209-220.
16 赵楠楠, 付本威, 马鸿斌, 等. 超声波对脉动热管传热影响的实验研究[J]. 工程热物理学报, 2015, (4): 829-932.
ZhaoN N, FuB W, MaH B, et al. Experimental study of ultraosound effect on the oscillating heat pipe[J]. Journal of Engineering Thermophysics, 2015, (4): 829-932.
17 ZhaoN, ZhaoD, MaH B. Ultrasonic effect on the startup of an oscillating heat pipe[J]. Journal of Heat Transfer, 2013, 135(7): 074503.
18 XianH Z, XuW J, ZhangY N, et al. Experimental investigations of dynamic fluid flow in oscillating heat pipe under pulse heating[J]. Applied Thermal Engineering, 2015, (88): 376-383.
19 徐德好, 陈陶菲. 机械振动对脉动热管传热性能影响实验研究[J]. 现代雷达, 2015, 37(4): 81-84.
XuD H, ChenT F. Experimental study on the heat transfer performance of PHP under vibration[J]. Modern Radar, 2015, 37(4): 81-84.
20 RidouaneE H, ChristopherM D, DarrenL H. A 2-D numerical study of chaotic flow in a nature convection loop[J]. International Journal of Heat and Mass Transfer, 2010, (53): 76-84.
21 LouisosW F, HittD L, DanforthC M. Chaotic flow in a 2D nature convection loop with heat flux boundaries[J]. International Journal of Heat and Mass Transfer, 2013, (61): 565-576.
22 刘建红, 邓涛, 白俊超, 等. 脉动热管激励机制强化传热数值研究[J]. 科技创新与应用, 2018, (4): 32-33.
LiuJ H, DengT, BaiJ C, et al. Numerical study on the heat transfer enhancement of excitation mechanism of pulsating heat pipes[J]. Technology Innovation and Application, 2018, (4): 32-33.
23 林梓荣. 自激式振荡热管热输送性能研究[D]. 广州: 华南理工大学, 2012.
LinZ R. Study on heat transfer performance of self-excited oscillation heat pipe[D]. Guangzhou: South China University of Technology, 2012.
24 王迅, 刘梦阳, 王盼, 等. 变管径单回路脉动热管传热特性数值研究[J]. 化学工程, 2018, 46(9): 32-36.
WangX, LiuM Y, WangP, et al. Numerical simulation on heat transfer characteristics of a single-loop pulsating heat pipe with variable diameters [J]. Chemical Engineering (China), 2018, 46(9): 32-36.
25 汪健生, 马赫. 蒸发/冷凝段长度比对脉动热管性能的影响[J]. 化工进展, 2015, 34(11): 3846-3851.
WangJ S, MaH. Influences of the ratio of evaporation section length to condensation section length on the performance of pulsating heat pipe[J]. Chemical Industry and Engineering Progress, 2015, 34(11): 3846-3851.
26 PouryoussefiS M, ZhangY W. Numerical investigation of chaotic flow in a 2D closed-loop pulsating heat pipe[J]. Applied Thermal Engineering, 2016, (98): 617-627.
27 TiwariM, DiwakarN. Experimental study and CFD based simulation of closed loop pulsating heat pipe using of refrigerants (R-134a)[J]. International Journal of Modern Engineering Research, 2016, (7): 53-61.
28 WangJ, MaH, ZhuQ, et al. Numerical and experimental investigation of pulsating heat pipes with corrugated configuration[J]. Applied Thermal Engineering, 2016, 102: 158-166.
29 FadhlB, WrobelL C, JouharaH. CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a[J]. Applied Thermal Engineering, 2015, 78: 482-490.
30 SureshV J, BhramaraP. CFD analysis of copper closed loop pulsating heat pipe[J]. Materials Today: Proceedings , 2018, 5(2): 5487-5495.
31 WenH L. A pressure iteration scheme for two-phase flow modeling[M]//Computational Methods for Two-Phase Flow and Particle Transport. World Scientific, 1980: 61-82.
[1] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[2] 海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309.
[3] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[4] 候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370.
[5] 宋粉红, 王伟, 陈奇成, 范晶. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381.
[6] 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389.
[7] 陈建业, 丁月, 吴钊, 禹云星, 邵双全. 带涡流管的新型加氢流程数值研究[J]. 化工学报, 2021, 72(S1): 461-466.
[8] 张经伟, 刘永阳, 刘东, 邵国栋, 李元鲁, 刘舫辰, 杜文静. 竖直壁面上含SO2气体的锅炉烟气的低温冷凝特性[J]. 化工学报, 2021, 72(S1): 475-481.
[9] 何起帆, 吴闽强, 李廷贤, 王如竹. 正十八烷/OBC/EG复合定型相变材料制备及热物性[J]. 化工学报, 2021, 72(S1): 539-545.
[10] 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139.
[11] 郝刚卫, 刘晔, 晏刚, 鱼剑琳. 串并联风冷冰箱性能优化[J]. 化工学报, 2021, 72(S1): 178-183.
[12] 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
[13] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[14] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[15] 曲泓硕, 张伦, 张小松, 纪文彬. 溶液除湿系统空气状态影响因素[J]. 化工学报, 2021, 72(S1): 210-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘植昌, 孟祥海, 徐春明, 高金森. 重油催化裂解汽柴油二次裂解性能研究[J]. CIESC Journal, 2007, 15(3): 309 -314 .
[2] 刘永健, 袁希钢, 罗祎青. 基于浓度间隔分析的用水系统集成(II)不连续过程[J]. CIESC Journal, 2007, 15(3): 369 -375 .
[3] 罗艳托, 朱建华, 陈光进. 鼓泡塔中水合物法分离混合气体的数值模拟[J]. CIESC Journal, 2007, 15(3): 345 -352 .
[4] 李良智, 乔斌, 元英进. 氮源对利迪链菌素生产及相关次级代谢物分布的影响[J]. CIESC Journal, 2007, 15(3): 403 -410 .
[5] 刘亚青, 赵贵哲. 三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究[J]. CIESC Journal, 2007, 15(3): 429 -432 .
[6] 虞启明, pairat Kaewsarn, 马卫东, Jose T. Matheickal, 尹平河. 用海藻类生物吸附剂去除废水中的重金属离子——一种经济型新技术[J]. CIESC Journal, 2001, 9(2): 133 -136 .
[7] 高倩, 阎威武, 邵惠鹤. 一种新颖的鲁棒动态数据校正方法[J]. CIESC Journal, 2007, 15(5): 698 -702 .
[8] RENXiaoguang(任晓光),LITiefeng(李铁凤)andZHAOQi(赵起). Effect of Surface Treatment on Flow Boiling Heat Transfer Coefficient in CaSO4 Containing Water[J]. CIESC Journal, 2006, 14(1): 122 -126 .
[9] 高习群, 马友光, 朱春英, 余国琮. 单泡吸收过程的界面传质机理[J]. CIESC Journal, 2006, 14(2): 158 -163 .
[10] 王淑梅, 于养信, 高光华. 气体透过碳膜的非平衡动力学模拟研究
[J]. CIESC Journal, 2006, 14(2): 164 -170 .