化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2763-2772.doi: 10.11949/0438-1157.20201484

• 能源和环境工程 • 上一篇    下一篇

水合盐基中低温热化学储热材料性能测试及数值研究

李威(),王秋旺,曾敏()   

  1. 西安交通大学能源与动力工程学院,热流科学与工程教育部重点实验室,陕西 西安 710049
  • 收稿日期:2020-10-26 修回日期:2020-12-02 出版日期:2021-05-05 发布日期:2021-05-05
  • 通讯作者: 曾敏 E-mail:limingwei93@163.com;zengmin@mail.xjtu.edu.cn
  • 作者简介:李威(1993—),男,博士研究生,limingwei93@163.com
  • 基金资助:
    国家自然科学基金面上项目(51776157);中央高校基础研究经费(xzy022020024)

Performance test and numerical study of salt hydrate-based thermochemical heat storage materials at middle-low temperature

LI Wei(),WANG Qiuwang,ZENG Min()   

  1. Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2020-10-26 Revised:2020-12-02 Published:2021-05-05 Online:2021-05-05
  • Contact: ZENG Min E-mail:limingwei93@163.com;zengmin@mail.xjtu.edu.cn

摘要:

以水合盐K2CO3·1.5H2O和膨胀石墨(EG)分别作为化学蓄热材料和多孔基质,研制了复合储热吸附剂K2CO3@EG。对该复合吸附剂和未掺杂膨胀石墨的纯水合盐就脱附储热、吸附性能、循环稳定性等方面进行了对比分析。结果表明,复合吸附剂所需的脱附温度降低,对吸附质的吸附动力学性能也有明显提升且可有效避免潮解现象。经过连续15次的脱附-水合循环实验后,纯盐和复合吸附剂的储热密度分别下降27.6%和10.9%。此外,对储热单元的数值研究结果初步验证了该蓄热体系的可行性。

关键词: 水合盐, 热化学储热, 复合吸附剂, 动力学, 传热, 储热密度, 循环稳定性

Abstract:

Using hydrated salt K2CO3·1.5H2O and expanded graphite (EG) as chemical heat storage materials and porous matrix respectively, a composite heat storage adsorbent K2CO3@EG was developed. The desorption, adsorption performance and cycle stability of the composite sorbent and pure salt without EG-doping were compared and analyzed. The results show that the desorption temperature of the composite adsorbent is reduced, and the adsorption kinetics of adsorbate is obviously improved, which can effectively avoid deliquescence. After fifteen consecutive desorption-hydration cycle experiments, the heat storage density of pure salt and composite adsorbent decreased by 27.6% and 10.9%, respectively. In addition, the numerical results of the thermal storage unit preliminarily verify the feasibility of the thermal storage system.

Key words: salt-hydrate, thermochemical heat storage, composite sorbent, kinetics, heat transfer, energy storage density, cycle stability

中图分类号: 

  • TK 02

图1

水合盐基化学蓄热系统运行示意图"

图2

膨胀石墨(a),纯水合盐(b)以及 K2CO3@EG复合吸附剂(c)的SEM图"

图3

纯盐与复合吸附剂在30℃,(a)29% RH 和(b)不同相对湿度条件下的吸附情况"

表1

两种吸附剂不同工况下平衡吸附量及所需时间"

工况纯K2CO3CS15

平衡吸附

量/(g/g)

所需

时间/min

平衡吸

附量/(g/g)

所需

时间/min

30℃,29% RH0.19063600.168250
30℃,40% RH0.19243500.169230
30℃,55% RH0.244000.2031360

图4

纯盐与复合吸附剂的TG-DSC测量结果"

图5

(a) 纯K2CO3和 (b) CS15复合吸附剂在循环过程中含水量和储热密度的变化"

图6

整体式储热管道(a)和储热单元对称结构一半及边界条件示意图(b),网格独立性验证(c)"

表2

控制方程及描述"

控制方程描述
反应动力学?α?t=Afexp-EaRT(1-α)2/3pvpeqα为转化率;pv, peq分别为蒸汽动态压力和平衡压力;Af为指前因子;Ea为反应活化能;R为通用气体常数
克劳修斯-克拉贝隆方程lnpeqpref=-ΔHrRTeq+ΔSrRpref为参考水平压力;ΔHr为反应焓;ΔSr 为熵
质量守恒及质量输运

(1-ε)?ρs?t=ρs??α?t (solid)

ε?ρv?t=Sw-?(ρvu)+DgΔρv(gas)

ε为吸附剂反应床孔隙率;Dg为蒸汽在多孔吸附剂内扩散系数
质量源项SwSw=ρs?α?tMvMsρs 为储热吸附剂密度;Mv/Ms 为蒸汽摩尔质量和储热吸附剂摩尔质量比值
湿空气混合物??tερm+??ρmu=Swρm 为湿空气密度;u 为气体速度
多孔储热材料内流体流动??tρmu+uε??ρmu=??[-εpvI+μm?u+?uT-23μm??uI]+Swuε-εμvkuk为反应床渗透率;μm为水蒸气黏度
能量守恒(ρCp)eff??T?t=?(λeff?T)?-Cpv?ρv?u??T+q˙热源 q˙=±ρsMs?α?tΔHr, 正负号取决于是吸附或脱附

图7

释热过程中反应床及出口空气温度及吸附转化率变化"

图8

吸附床在不同时刻吸附转化程度"

图9

不同相对湿度对吸附床温度的影响"

1 Wang F, Gu J, Wu J. Perspective taking, energy policy involvement, and public acceptance of nuclear energy: evidence from China [J]. Energy Policy, 2020, 145: 111716.
2 Allen-Dumas M R, Rose A N, New J R, et al. Impacts of the morphology of new neighborhoods on microclimate and building energy [J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110030.
3 马坤茹, 李雪峰, 李思琦, 等. 新型太阳能/空气能直膨式热泵与空气源热泵供热性能对比[J]. 化工学报, 2020, 71: 375-381.
Ma K R, Li X F, Li S Q. Contrastive research of heating performance of direct expansion solar/air assisted heat pump system and air-source heat pump [J]. CIESC Journal, 2020, 71: 375-381.
4 Gaeini M, Rouws A L, Salari J W O, et al. Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage [J]. Applied Energy, 2018, 212(15): 1165-1177.
5 Xu M, Zhao P, Huo Y, et al. Thermodynamic analysis of a novel liquid carbon dioxide energy storage system and comparison to a liquid air energy storage system[J]. Journal of Cleaner Production, 2020, 242: 118437.
6 刘华, 彭佳杰, 余凯, 等. 活性氧化铝基质新型复合吸附剂的制备和储热性能[J].化工学报, 2020, 71(7): 3354-3361.
Liu H, Peng J J, Yu K, et al. Preparation and thermal storage performance of novel composite sorbent with activated alumina matrix [J]. CIESC Journal, 2020, 71(7): 3354-3361.
7 Bennici S, Polimann T, Ondarts M, et al. Long-term impact of air pollutants on thermochemical heat storage materials [J]. Renewable and Sustainable Energy Reviews, 2020, 117: 109473.
8 徐凯迪, 谢涛, 王升, 等. 太阳能甲烷干重整复杂反应体系的热化学储能特性[J]. 化工进展, 2019, 38(11): 4921-4929.
Xu K D, Xie T, Wang S, et al. Thermochemical energy storage characteristics of complex reaction system for solar methane dry reforming system [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4921-4929.
9 Zhang Y, Wang R. Sorption thermal energy storage: concept, process, applications and perspectives[J]. Energy Storage Materials, 2020, 27: 352-369.
10 Clark R J, Mehrabadi A, Farid M. State of the art on salt hydrate thermochemical energy storage systems for use in building applications [J]. Journal of Energy Storage, 2020, 27: 101145.
11 李威, 陈威, 王丹丹. 基于水合盐热化学储能的技术研究与进展[J]. 制冷与空调, 2017, 17(8): 14-21.
Li W, Chen W, Wang D D. Research and development of thermochemical energy storage based on hydrated salt [J]. Refrigeration and Air-Conditioning, 2017, 17(8): 14-21.
12 郝茂森, 刘洪芝, 王婉桐, 等. 水合盐热化学储热材料的研究进展[J]. 储能科学与技术, 2020, 9(3): 791-796.
Hao M S, Liu H Z, Wang W T, et al. Research progress of thermochemical heat storage materials of hydrated salts [J]. Energy Storage Science and Technology, 2020, 9(3): 791-796.
13 翁立奎, 张叶龙, 姜琳, 等. 基于水合盐的热化学吸附储热技术研究进展[J]. 储能科学与技术, 2020, 9(6): 1729-1736.
Weng L K, Zhang Y L, Jiang L, et al. Research progress on thermochemical adsorption heat storage technology based on hydrate [J]. Energy Starage Science and Technology, 2020, 9(6): 1729-1736.
14 李琳, 黄宏宇, 邓立生, 等. 低品位能源化学储热材料研究进展[J]. 化工进展, 2020, 39(9): 3608-3616.
Li L, Huang H Y, Deng L S, et al. Research progress of low-grade energy chemical heat storage materials [J] Chemical Industry and Engineering Progress, 2020, 39(9): 3608-3616.
15 Fumey B, Weber R, Baldini L. Sorption based long-term thermal energy storage - process classification and analysis of performance limitations: a review [J]. Renewable and Sustainable Energy Reviews, 2019, 111: 57-74.
16 Okhrimenko L, Favergeon L, Johannes K, et al. New kinetic model of the dehydration reaction of magnesium sulfate hexahydrate: application for heat storage [J]. Thermochimica Acta, 2020, 687: 178569.
17 Li W, Zeng M, Wang Q W. Development and performance investigation of MgSO4/SrCl2 composite salt hydrate for mid-low temperature thermochemical heat storage [J]. Solar Energy Materials and Solar Cells, 2020, 210: 110509.
18 Zhang Y N, Wang R Z, Li T X. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage [J]. Energy, 2018, 156: 240-249.
19 Xu J X, Li T X, Chao J W, et al. High energy-density multi-form thermochemical energy storage based on multi-step sorption processes [J]. Energy, 2019, 185: 1131-1142.
20 Wei S, Han R, Su Y, et al. Development of pomegranate-type CaCl2@C composites via a scalable one-pot pyrolysis strategy for solar-driven thermochemical heat storage [J]. Energy Conversion and Management, 2020, 212: 112694.
21 Nonnen T, Preißler H, Kött S, et al. Salt inclusion and deliquescence in salt/zeolite X composites for thermochemical heat storage [J]. Microporous and Mesoporous Materials, 2020, 303: 110239.
22 Togawa J, Kurokawa A, Nagano K. Water sorption property and cooling performance using natural mesoporous siliceous shale impregnated with LiCl for adsorption heat pump [J]. Applied Thermal Engineering, 2020, 173: 115241.
23 Calabrese L, Brancato V, Palomba V, et al. Magnesium sulphate-silicone foam composites for thermochemical energy storage: assessment of dehydration behaviour and mechanical stability [J]. Solar Energy Materials and Solar Cells, 2019, 200: 109992.
24 Ait Ousaleh H, Said S, Zaki A, et al. Silica gel/inorganic salts composites for thermochemical heat storage: Improvement of energy storage density and assessment of cycling stability [J]. Materials Today: Proceedings, 2020, 30: 937-941.
25 Li W, Klemeš J J, Wang Q W, et al. Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage [J]. Renewable Energy, 2020, 157: 920-940.
26 Cammarata A, Verda V, Sciacovelli A, et al. Hybrid strontium bromide-natural graphite composites for low to medium temperature thermochemical energy storage: formulation, fabrication and performance investigation [J]. Energy Conversion and Management, 2018, 166: 233-240.
27 Ait Ousaleh H, Sair S, Mansouri S, et al. New hybrid graphene/inorganic salt composites for thermochemical energy storage: synthesis, cyclability investigation and heat exchanger metal corrosion protection performance [J]. Solar Energy Materials and Solar Cells, 2020, 215: 110601.
28 Zhou H, Zhang D. Effect of graphene oxide aerogel on dehydration temperature of graphene oxide aerogel stabilized MgCl2⋅6H2O composites [J]. Solar Energy, 2019, 184: 202-208.
29 Li W, Klemeš J J, Wang Q W, et al. Performance analysis of consolidated sorbent based closed thermochemical energy storage reactor for environmental sustainability[J]. Journal of Cleaner Production, 2020, 265: 121821.
30 Li W, Guo H, Zeng M, et al. Performance of SrBr2·6H2O based seasonal thermochemical heat storage in a novel multilayered sieve reactor [J]. Energy Conversion and Management, 2019, 198: 111843.
[1] 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126.
[2] 马秋鸣, 聂磊, 潘权稳, 山訸, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177.
[3] 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
[4] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[5] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[6] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[7] 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301.
[8] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[9] 王佳星, 赵家睿, 李斯特, 付媛, 刘凤杰, 韦昌. 不同放汽阀流量特性对弹射过程的影响规律[J]. 化工学报, 2021, 72(S1): 318-325.
[10] 顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335.
[11] 邹慧明, 王英琳, 李旋, 唐明生, 田长青. R290直线压缩机变工况制冷性能[J]. 化工学报, 2021, 72(S1): 342-347.
[12] 王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355.
[13] 候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370.
[14] 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389.
[15] 张牧星, 张小松, 丁烨, 宋翼. 氧化石墨烯膜间距对电渗析空气除湿特性影响的分子动力学研究[J]. 化工学报, 2021, 72(S1): 63-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张秀莉, 张泽廷, 张卫东, 郝欣. 随机填充中空纤维膜组件中非稳态渗透传质数学模型[J]. CIESC Journal, 2004, 12(2): 185 -190 .
[2] 司徒粤, 胡剑峰, 黄洪, 傅和青, 曾汉维, 陈焕钦. 新型环氧大豆油增韧酚醛树脂的合成与性质[J]. CIESC Journal, 2007, 15(3): 418 -423 .
[3] 张玉玲, 黄君礼, 程志辉, 杨士林. 微波溶剂法合成天冬氨酸-谷氨酸共聚物研究[J]. CIESC Journal, 2007, 15(3): 458 -462 .
[4] 刘会娥, 魏飞, 杨艳辉, 金涌. 内构件存在时提升管内流动及颗粒混合行为研究

[J]. CIESC Journal, 2003, 11(4): 371 -376 .
[5] 李英, 都健, 姚平经. 多杂质水网络设计和零排放[J]. CIESC Journal, 2003, 11(5): 559 -564 .
[6] 刘润静, 陈建峰, 郭奋, 吉米, 沈志刚. 纳米碳酸钙在非等温条件下热分解动力学及机理研究[J]. CIESC Journal, 2003, 11(3): 302 -306 .
[7] Erol nce, smail . 水,乙醇和丁二酸二甲酯三元体系的液体平衡[J]. CIESC Journal, 2002, 10(5): 597 -603 .
[8] 王林翔, 陈鹰, 范毓润, 路甬祥. 混沌混合中流体指数拉伸与混合效率的数值研究[J]. CIESC Journal, 2000, 8(3): 203 -207 .
[9] 钟理, Kuo Chiang-Hai. 气相和液相中三氯乙烯和苯的臭氧化动力学[J]. CIESC Journal, 2000, 8(3): 272 -275 .
[10] 冯媛媛, 叶汝强, 刘洪来. 反相气相色谱法测定溶液在高分子中的无限稀释活度系数[J]. CIESC Journal, 2000, 2(2): 167 -170 .