化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3390-3398.doi: 10.11949/0438-1157.20201589

• 材料化学工程与纳米技术 • 上一篇    下一篇

石墨烯量子点纳滤膜的仿生修饰及稳定性研究

刘嘉玮(),郝雨峰,苏延磊()   

  1. 天津大学化工学院,天津 300072
  • 收稿日期:2020-11-03 修回日期:2021-02-04 出版日期:2021-06-05 发布日期:2021-06-05
  • 通讯作者: 苏延磊 E-mail:296486258@qq.com;suyanlei@tju.edu.cn
  • 作者简介:刘嘉玮(1998—),男,硕士研究生,296486258@qq.com
  • 基金资助:
    国家自然科学基金项目(21878217)

Biomimetic modification and stability of graphene quantum dots nanofiltration membranes

LIU Jiawei(),HAO Yufeng,SU Yanlei()   

  1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2020-11-03 Revised:2021-02-04 Published:2021-06-05 Online:2021-06-05
  • Contact: SU Yanlei E-mail:296486258@qq.com;suyanlei@tju.edu.cn

摘要:

亲水修饰是提高纳滤膜抗污染性能的重要方法。采用氯化胆碱(ChC)对石墨烯量子点(GQDs-TMC)纳滤膜进行后处理仿生修饰,模拟细胞膜上磷酰胆碱的两性离子抗污染表面。红外光谱(FTIR)和表面元素分析(EDS)表明ChC以共价键结合在纳滤膜分离层上。提高反应温度和氯化胆碱溶液浓度,可以增加纳滤膜的仿生修饰程度。ChC的季铵基团与GQDs-TMC纳滤膜分离层羧基基团形成两性离子结构,提高了仿生修饰(GQDs/ChC-TMC)纳滤膜的亲水性,降低了表面电势,提高了对染料分子和二价盐离子的截留率,并且显著增强了抗污染性能。经过酸、碱和氧化剂溶液浸泡处理及高温纳滤膜分离实验,GQDs/ChC-TMC纳滤膜的渗透率和截留率均未发生较大改变,表明仿生纳滤膜具有优异的化学稳定性和耐热稳定性。

关键词: 石墨烯量子点, 纳滤, 膜, 氯化胆碱, 仿生修饰, 抗污染, 稳定性

Abstract:

Biomimetic modification is an important method to improve the antifouling performance of nanofiltration membranes. Choline chloride (ChC) was used to post-process the graphene quantum dots (GQDs-TMC) nanofiltration membrane to mimic the zwitterionic anti-pollution surface of phosphorylcholine on the cell membrane. Fourier transform infrared spectrometer (FTIR) and energy dispersive spectrometer (EDS) measurement showed that choline chloride molecules were covalently bonded to the separation layer of nanofiltration membrane. The degree of biomimetic modification would be enhanced by increasing the reaction temperature and the concentration of choline chloride solution. The quaternary ammonium groups of ChC forms zwitterionic structure with carboxyl groups in the separation layer of nanofiltration membranes, which improved the hydrophilicity of the biomimetic nanofiltration (GQDs/ChC-TMC) membranes, reduced the surface potential, improved the rejection ratios of dye molecules and divalent salt ions, and significantly enhanced the antifouling performance. After soaking in acid, alkali and oxidant solutions and high temperature separation experiments of nanofiltration membrane, the permeability and rejection ratio of GQDs/ChC-TMC nanofiltration membranes have not changed significantly. It indicated that the biomimetic nanofiltration membrane has excellent chemical stability and thermal stability.

Key words: graphene quantum dots, nanofiltration, membrane, choline chloride, biomimetic modification, antifouling, stability

中图分类号: 

  • TQ 028.8

图1

GQD/ChC-TMC纳滤膜模拟细胞膜磷酰胆碱抗污染两性离子结构"

表1

GQDs/ChC-TMC纳滤膜的制备条件"

Membranes

ChC concentration/%

(质量)

Solution temperature of modification/℃
0#090
1#0.2590
2#0.5090
3#0.7590
4#1.0090
5#0.7550
6#0.7560
7#0.7570
8#0.7580

图2

GQDs的TEM图"

图3

GQDs/ChC-TMC纳滤膜的SEM表面图(a)、AFM图(b)、SEM断面图(c)"

表2

不同制备条件下GQDs/ChC-TMC纳滤膜样品的表面性质"

MembranesChC concentration / %(质量)Solution temperature of modification/℃Surface roughnessZeta potential/mVWater contact angles/(°)
0#09010.9-45.268.3
1#0.259012.3-34.459.2
2#0.509013.0-17.658.7
3#0.759013.6-12.749.1
4#1.009013.2-9.352.1

图4

GQDs-TMC和GQDs/ChC-TMC纳滤膜的红外图谱(a),BET孔径分布图(b)、EDS分析(c)"

图5

反应温度(a)和ChC浓度(b)对GQDs/ChC-TMC纳滤膜分离性能的影响"

表3

高温原料液和不同溶液浸泡24 h后GQDs/ChC-TMC纳滤膜的水渗透率和截留率"

Treatments

Permeability/

(?L·m-2·h-1·bar-1)

Na2SO4 rejection /%

MB rejection/

%

H2O52.4±0.550.2±0.897.8±0.8
80℃ H2O55.2±1.447.1±1.697.1±1.2
90℃ H2O53.8±1.246.8±1.196.8±1.3
1 g·L-1 NaClO52.4±0.849.2±0.796.4±0.8
3%(mass) H2O251.8±0.650.2±0.896.6±0.7
pH=13 NaOH52.5±0.551.2±0.993.3±0.3
pH=1 HCl51.6±0.649.2±1.491.6±1.0

图6

GQDs/ChC-TMC纳滤膜样品在1 g·L-1?NaClO溶液浸泡后的长期稳定性"

图7

GQDs-TMC和GQDs/ChC-TMC纳滤膜在HA(a)和BSA(b)污染液体系中的抗污染性能。3#样品在3.0% H2O2溶液浸泡6 h后得到3#*样品"

表4

GQDs-TMC和GQDs/ChC-TMC纳滤膜的抗污染指数"

Antifouling indexes/%HABSA
0#3#3#*0#3#3#*
FRR84.294.594.371.283.683.8
DRt28.213.810.940.724.420.8
DRr12.58.45.211.88.04.6
DRir15.85.45.728.816.416.2
1 李祥, 张忠国, 任晓晶, 等. 纳滤膜材料研究进展[J]. 化工进展, 2014, 33(5): 1210-1218, 1229.
Li X, Zhang Z G, Ren X J, et al. Progress in nanofiltration membrane materials[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1210-1218, 1229.
2 李红果, 李天祥, 朱静, 等. 膜分离技术处理工业废水研究进展[J]. 应用化工, 2018, 47(12): 2739-2743.
Li H G, Li T X, Zhu J, et al. Research progress of membrane separation technology for industrial wastewater treatment[J]. Applied Chemical Industry, 2018, 47(12): 2739-2743.
3 石紫, 王志, 王宠, 等. 染料分离有机纳滤膜制备技术研究进展[J]. 膜科学与技术, 2020, 40(1): 340-351.
Shi Z, Wang Z, Wang C, et al. Research progress in the preparation of organic nanofiltration membranes for dye separation[J]. Membrane Science and Technology, 2020, 40(1): 340-351.
4 刘威, 杭晓风, 万印华. 混凝-纳滤组合工艺处理印染整理废水[J]. 水处理技术, 2018, 44(11): 84-87, 92.
Liu W, Hang X F, Wan Y H. Treatment of finishing wastewater in dyeing and printing by coagulation-nanofiltration combined technology[J]. Technology of Water Treatment, 2018, 44(11): 84-87, 92.
5 Chen D Y, Sirkar K K, Jin C, et al. Membrane-based technologies in the pharmaceutical industry and continuous production of polymer-coated crystals/particles[J]. Current Pharmaceutical Design, 2017, 23(2): 242-249.
6 李露, 赵河立, 邵天宝, 等. 纳滤技术在海水淡化中的应用实验研究[J]. 水处理技术, 2015, 41(10): 100-103, 126.
Li L, Zhao H L, Shao T B, et al. Experimental study of nanofiltration technology in seawater desalination[J]. Technology of Water Treatment, 2015, 41(10): 100-103, 126.
7 李露, 苏立永, 邵天宝, 等. 纳滤技术在海水淡化中的应用实验研究(Ⅱ)[J]. 水处理技术, 2016, 42(12): 89-91, 95.
Li L, Su L Y, Shao T B, et al. Experimental study of nanofiltration technology in seawater desalination(Ⅱ)[J]. Technology of Water Treatment, 2016, 42(12): 89-91, 95.
8 Li Y, Wong E, Mai Z H, et al. Fabrication of composite polyamide/Kevlar aramid nanofiber nanofiltration membranes with high permselectivity in water desalination[J]. Journal of Membrane Science, 2019, 592: 117396.
9 Liu M H, Yu S C, Tao J, et al. Preparation, structure characteristics and separation properties of thin-film composite polyamide-urethane seawater reverse osmosis membrane[J]. Journal of Membrane Science, 2008, 325(2): 947-956.
10 栾仁杰, 马骁轩, 刘爱菊, 等. 高效纳滤膜的制备研究进展[J]. 山东理工大学学报(自然科学版), 2020, 34(3): 17-22.
Luan R J, Ma X X, Liu A J, et al. Preparation of high efficiency nanofiltration membrane[J]. Journal of Shandong University of Technology (Natural Science Edition), 2020, 34(3): 17-22.
11 魏源送, 王健行, 岳增刚, 等. 纳滤膜技术在废水深度处理中的膜污染及控制研究进展[J]. 环境科学学报, 2017, 37(1): 1-10.
Wei Y S, Wang J X, Yue Z G, et al. Fouling and control of nanofiltration membrane in the advanced treatment of wastewater: an overview[J]. Acta Scientiae Circumstantiae, 2017, 37(1): 1-10.
12 黄嘉臣, 罗建泉, 郭世伟, 等. 化学清洗对聚酰胺纳滤膜的影响机制研究进展[J]. 膜科学与技术, 2020, 40(1): 188-195.
Huang J C, Luo J Q, Guo S W, et al. Research progress on effect mechanisms of chemical cleaning on polyamide nanofiltration membrane[J]. Membrane Science and Technology, 2020, 40(1): 188-195.
13 Hacıfazlıoğlu M C, Parlar İ, Pek T Ö, et al. Evaluation of chemical cleaning to control fouling on nanofiltration and reverse osmosis membranes after desalination of MBR effluent[J]. Desalination, 2019, 466: 44-51.
14 Li Y, Li J, de Soria R B, et al. Aramid nanofiber and modified ZIF-8 constructed porous nanocomposite membrane for organic solvent nanofiltration[J]. Journal of Membrane Science, 2020, 603: 118002.
15 Shan L L, Gu J H, Fan H W, et al. Microphase diffusion-controlled interfacial polymerization for an ultrahigh permeability nanofiltration membrane[J]. ACS Applied Materials & Interfaces, 2017, 9(51): 44820-44827.
16 曹阳, 任玉灵, 郭世伟, 等. 聚酰胺薄层复合膜的界面聚合制备过程调控研究进展[J]. 化工进展, 2020, 39(6): 2125-2134.
Cao Y, Ren Y L, Guo S W, et al. Research progress on process optimization for preparation of polyamide thin-film composite membrane by interfacial polymerization[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2125-2134.
17 Guo X Y, Liu D H, Han T T, et al. Preparation of thin film nanocomposite membranes with surface modified MOF for high flux organic solvent nanofiltration[J]. AIChE Journal, 2017, 63(4): 1303-1312.
18 Li W, Shi C, Zhou A, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation[J]. Separation and Purification Technology, 2017, 186: 233-242.
19 徐颜军, 徐泽海, 孟琴, 等. 新型还原氧化石墨烯/氮化碳复合纳滤膜制备及其性能[J]. 化工学报, 2019, 70(9):3565-3572.
Xu Y J, Xu Z H, Meng Q, et al. Preparation and performance of novel rGO/uCN composite nanofiltration membrane[J]. CIESC Journal, 2019, 70(9):3565-3572.
20 项军, 刘天宇, 谢宗丽, 等. 聚醚砜基膜热稳定性对复合纳滤膜性能的影响[J]. 膜科学与技术, 2020, 40(2): 60-66.
Xiang J, Liu T Y, Xie Z L, et al. Effect of thermal stability of polyethersulfone supporting ultrafiltraion membrane on properties of composite nanofiltration membrane[J]. Membrane Science and Technology, 2020, 40(2): 60-66.
21 汪菊, 牛淑锋, 费莹, 等. GO/Al2O3复合纳滤膜的制备及其稳定性能研究[J]. 化工学报, 2020, 71(6): 2795-2803.
Wang J, Niu S F, Fei Y, et al. Fabrication and stability of GO/Al2O3 composite nanofiltration membranes[J]. CIESC Journal, 2020, 71(6): 2795-2803.
22 Peng H W, Tang Q Q, Tang S H, et al. Surface modified polyamide nanofiltration membranes with high permeability and stability[J]. Journal of Membrane Science, 2019, 592: 117386.
23 Qiang R B, Hu L F, Hou K M, et al. Water-soluble graphene quantum dots as high-performance water-based lubricant additive for steel/steel contact[J]. Tribology Letters, 2019, 67(2): 1-9.
24 Bi R, Zhang R N, Shen J L, et al. Graphene quantum dots engineered nanofiltration membrane for ultrafast molecular separation[J]. Journal of Membrane Science, 2019, 572: 504-511.
25 Liu P S, Chen Q, Wu S S, et al. Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion[J]. Journal of Membrane Science, 2010, 350(1/2): 387-394.
26 Chen S F, Li L Y, Zhao C, et al. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials[J]. Polymer, 2010, 51(23): 5283-5293.
27 Zhao X T, Su Y L, Chen W J, et al. Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property[J]. Journal of Membrane Science, 2012, 415/416: 824-834.
28 Shahkaramipour N, Tran T N, Ramanan S, et al. Membranes with surface-enhanced antifouling properties for water purification[J]. Membranes, 2017, 7(1): E13.
29 Rezania J, Shockravi A, Vatanpour V, et al. Preparation and performance evaluation of carboxylic acid containing polyamide incorporated microporous ultrafiltration PES membranes[J]. Polymers for Advanced Technologies, 2019, 30(2): 407-416.
30 Zhang Y, Su Y L, Peng J M, et al. Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride[J]. Journal of Membrane Science, 2013, 429: 235-242.
31 Li B, Jain P, Ma J, et al. Trimethylamine N-oxide-derived zwitterionic polymers: a new class of ultralow fouling bioinspired materials[J]. Science Advances, 2019, 5(6): eaaw9562.
[1] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[2] 赵文一, 匡以武, 王文, 张红星, 苗建印. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265.
[3] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[4] 刘献飞, 王恒, 王方, 李志强, 朱彩霞, 张浩飞. 单螺杆膨胀机螺旋槽道内液膜分布均匀特性[J]. 化工学报, 2021, 72(S1): 336-341.
[5] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[6] 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429.
[7] 徐健玮, 梁颖宗, 罗向龙, 陈健勇, 杨智, 陈颖. 液化天然气深冷-膜蒸馏海水淡化系统集成与分析[J]. 化工学报, 2021, 72(S1): 437-444.
[8] 陈晨, 王明明, 王志刚, 谭小耀. 镍基非对称中空纤维膜用于乙醇自热重整制氢[J]. 化工学报, 2021, 72(S1): 482-493.
[9] 韩威, 詹俊, 石红, 赵东, 蔡少君, 彭湘红, 肖标, 高宇. 氮和硫双掺杂石墨烯量子点的合成及其性能研究[J]. 化工学报, 2021, 72(S1): 530-538.
[10] 李海涛, 孟平凡, 张因, 武瑞芳, 黄鑫, 班丽君, 韩旭东, 席琳, 王兴皓, 田博辉, 赵永祥. SiO2网络限域CuO纳米晶的甲醛乙炔化性能研究[J]. 化工学报, 2021, 72(9): 4708-4717.
[11] 耿晨旭, 孙玉绣, 黄宏亮, 郭翔宇, 乔志华, 仲崇立. 机械化学法合成小尺寸MOF填料助力高性能CO2分离[J]. 化工学报, 2021, 72(9): 4750-4758.
[12] 张杰, 刘壮, 巨晓洁, 谢锐, 汪伟, 褚良银. 层状Mg/Al氢氧化物/聚乙烯醇复合膜的制备及染料截留性能的研究[J]. 化工学报, 2021, 72(9): 4941-4949.
[13] 陆俊杰, 张炜, 马浩. 基于F-K滑移流模型的柱面微槽气浮密封浮升能力分析[J]. 化工学报, 2021, 72(8): 4267-4278.
[14] 丁婉月, 马晓华. 合成次数及硅铝比调控SAPO-34分子筛膜的乙醇脱水性能[J]. 化工学报, 2021, 72(8): 4410-4417.
[15] 朱业铭, 刘金平, 许雄文, 朱丹丹. 竖直多孔平板上液膜流动特性的研究[J]. 化工学报, 2021, 72(8): 4081-4092.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张秀莉, 张泽廷, 张卫东, 郝欣. 随机填充中空纤维膜组件中非稳态渗透传质数学模型[J]. CIESC Journal, 2004, 12(2): 185 -190 .
[2] 李璐, 程江, 文秀芳, 皮丕辉, 杨卓如. 用作活性物载体聚苯乙烯-二乙烯苯多孔交联微球的悬浮聚合制备及表征[J]. CIESC Journal, 2006, 14(4): 471 -477 .
[3] 徐欧官, 苏宏业, 计建炳, 金晓明, 褚健. 甲苯歧化与C9芳烃烷基转移反应动力学模型和模拟分析[J]. CIESC Journal, 2007, 15(3): 326 -332 .
[4] 张瑛, 窦涛, 鲍晓军, 李玉平, 李晓峰. 基于固相转化机理合成五元环沸石的新技术[J]. CIESC Journal, 2003, 11(6): 656 -659 .
[5] 祝贵兵, 彭永臻, 王淑莹, 左金龙, 王亚宜, 郭建华. 分段进水生物脱氮工艺稳态模型的开发与试验评价[J]. CIESC Journal, 2007, 15(3): 411 -417 .
[6] 司徒粤, 胡剑峰, 黄洪, 傅和青, 曾汉维, 陈焕钦. 新型环氧大豆油增韧酚醛树脂的合成与性质[J]. CIESC Journal, 2007, 15(3): 418 -423 .
[7] 张玉玲, 黄君礼, 程志辉, 杨士林. 微波溶剂法合成天冬氨酸-谷氨酸共聚物研究[J]. CIESC Journal, 2007, 15(3): 458 -462 .
[8] 王紫色, 许淳淳, 曹霞, 徐奔. 仿古铸铁腐蚀产物的形貌、结构的演化历程及其危害性研究[J]. CIESC Journal, 2007, 15(3): 433 -438 .
[9] 屈玲, 佟大明, 吕志平, 萧墉壮, 窦涛. 苯乙烯在MCM-41介孔材料中聚合的研究[J]. CIESC Journal, 2003, 11(6): 677 -680 .
[10] 李英, 都健, 姚平经. 多杂质水网络设计和零排放[J]. CIESC Journal, 2003, 11(5): 559 -564 .