化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3626-3636.doi: 10.11949/0438-1157.20210021

• 催化、动力学与反应器 • 上一篇    下一篇

TiO2平板微反应器设计优化及光催化性能研究

谢钦崟1(),黄晓连1,李元2,李玲1,葛雪惠1(),邱挺1   

  1. 1.福州大学石油化工学院,福建 福州 350116
    2.中车环境科技有限公司,北京 100070
  • 收稿日期:2021-01-08 修回日期:2021-03-27 出版日期:2021-07-05 发布日期:2021-07-05
  • 通讯作者: 葛雪惠 E-mail:xie1218677239@163.com;gexuehui@fzu.edu.cn
  • 作者简介:谢钦崟(1996—),男,硕士研究生,xie1218677239@163.com
  • 基金资助:
    国家自然科学基金项目(21908026)

Design optimization and photocatalytic performance research of TiO2 planar microreactor

XIE Qinyin1(),HUANG Xiaolian1,LI Yuan2,LI Ling1,GE Xuehui1(),QIU Ting1   

  1. 1.College of Chemical Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
    2.CRRC Environmental Technology Co. , Ltd. , Beijing 100070, China
  • Received:2021-01-08 Revised:2021-03-27 Published:2021-07-05 Online:2021-07-05
  • Contact: GE Xuehui E-mail:xie1218677239@163.com;gexuehui@fzu.edu.cn

摘要:

光流体学可以将光催化反应与微流控技术结合,大幅提高光利用率和反应速率,实现对光催化水处理的高效强化,其中微反应器结构的设计与优化是研究重点之一。首先利用流体力学模拟分析优化通道级数,设计了5级树状通道平板反应器。进而,通过调控通道高度,研究不同高度的微通道对其光催化性能的影响。研究发现50 μm微反应器的降解性能及连续操作性能均优于100 μm。同时以亚甲基蓝为模拟废水对微反应器及釜式反应器的反应动力学、微反应器污染问题、连续操作性能等进行研究。研究表明,微反应器在不同流速下对亚甲基蓝均能实现连续高效降解,降解率远高于釜式反应器。当流速为55 μl/min时对5×10-5 mol/L亚甲基蓝可达到95%的降解率并保持较好的连续操作性能及重复使用性能。

关键词: 微反应器, 微通道, 光催化, 降解, 稳定性

Abstract:

Photofluidics can combine photocatalytic reaction with microfluidic technology, greatly improve light utilization and reaction rate, and achieve efficient enhancement of photocatalytic water treatment. The design and optimization of microreactor structure is one of the research focuses. In this work, we first use computational fluid dynamics simulation to optimize the number of channels, and design a 5-level tree-shaped microfluidic planar reactor. The planar microreactor has a 12 mm × 12 mm reaction chamber enclosed by TiO2 coated glass slide as bottom substrate and polydimethylsiloxane board as the top cover, and a microstructured UV-cured NOA-81 layer is as the sealant and flow input/output. Subsequently, photocatalytic performance is investigated by tuning the microreactor overall height. This is evidenced by our findings in this paper that the degradation and continuous operation performance of the 50 μm microreactor is better than that of 100 μm microreactor. In the photocatalysis experiment, the methylene blue is used as a simulated wastewater to study the performance of planar microreactors and tank reactors, including reaction kinetics, microreactor pollution problems and continuous operation performance. It is shown that when the microreactors operate at different flow rates, the methylene blue can achieve continuous and high-efficiency photocatalytic degradation, and the degradation rate is much higher than the tank reactor. When the flow rate is 55 μl/min, the degradation rate of 5×10-5 mol/L methylene blue can reach 95%, which means that the planar microreactors can maintain good continuous operation performance and reusability. Planar micreactor inherits the merits of microfluidics, such as huge specific surface area, efficient and stable reaction, and easy control, and offers an efficient and feasible scheme for water treatment.

Key words: microreactor, microchannels, photocatalysis, degradation, stability

中图分类号: 

  • TQ 034

图1

5级通道稳态模型网格图案"

图2

不同级数微反应器内的速度和压力分布"

图3

微反应器装置和树状矩形微通道"

图4

光催化微流控系统"

图5

TiO2多孔薄膜的SEM图"

图6

TiO2薄膜的XRD图"

图7

亚甲基蓝的降解效果对比"

图8

不同反应器的伪一级动力学拟合"

图9

平板微反应器的连续降解实验"

图10

实验使用的微反应器"

图11

50 μm反应器的降解对比实验"

图12

50 μm-SPR的不同反应浓度动力学拟合"

图13

55 μl/min时微反应器内的速度分布/(m/s)"

图14

50 μm-SPR的高流速降解实验"

1 Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces[J]. Nature, 1997, 388(6641): 431-432.
2 Singh R, Dutta S. A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts[J]. Fuel, 2018, 220: 607-620.
3 Nogueira M V, Lustosa G M M M, Kobayakawa Y, et al. Nb-doped TiO2 photocatalysts used to reduction of CO2 to methanol[J]. Advances in Materials Science and Engineering, 2018, 2018: 1-8.
4 Zhan W W, Sun L M, Han X G. Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks[J]. Nano-Micro Letters, 2019, 11(1): 1-28.
5 Krysa J, Mantzavinos D, Pichat P, et al. Advanced oxidation processes for water/wastewater treatment[J]. Environmental Science and Pollution Research, 2018, 25(35): 34799-34800.
6 Yusuf A, Garlisi C, Palmisano G. Overview on microfluidic reactors in photocatalysis: applications of graphene derivatives[J]. Catalysis Today, 2018, 315: 79-92.
7 Su Y H, Straathof N J W, Hessel V, et al. Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications[J]. Chemistry - A European Journal, 2014, 20(34): 10562-10589.
8 Liu C H, Lee G B. A micropump using amplified deformation of resilient membranes through oil hydraulics[J]. Microfluidics and Nanofluidics, 2014, 17(2): 393-400.
9 Suhadolnik L, Pohar A, Novak U, et al. Continuous photocatalytic, electrocatalytic and photo-electrocatalytic degradation of a reactive textile dye for wastewater-treatment processes: batch, microreactor and scaled-up operation[J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 178-188.
10 Yang L L, Wei J T, Ma Z, et al. The fabrication of micro/nano structures by laser machining[J]. Nanomaterials, 2019, 9(12): E1789.
11 Arshavsky-Graham S, Enders A, Ackerman S, et al. 3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection[J]. Microchimica Acta, 2021, 188(3): 1-12.
12 Azzouz I, Habba Y G, Capochichi-Gnambodoe M, et al. Zinc oxide nano-enabled microfluidic reactor for water purification and its applicability to volatile organic compounds[J]. Microsystems & Nanoengineering, 2018, 4: 17093.
13 Fernández-Catalá J, Berenguer-Murcia Á, Cazorla-Amorós D. Photocatalytic oxidation of VOCs in gas phase using capillary microreactors with commercial TiO₂ (P25) fillings[J]. Materials, 2018, 11(7): E1149.
14 Fernández-Catalá J, Garrigós-Pastor G, Berenguer-Murcia Á, et al. Photo-microfluidic chip reactors for propene complete oxidation with TiO2 photocalyst using UV-LED light[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103408.
15 Oliveira de Brito Lira J, Riella H G, Padoin N, et al. An overview of photoreactors and computational modeling for the intensification of photocatalytic processes in the gas-phase: state-of-art[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105068.
16 Huang X, Wang J, Li T, et al. Review on optofluidic microreactors for artificial photosynthesis[J]. Beilstein Journal of Nanotechnology, 2018, 9: 30-41.
17 Yu G S, Wang N. Gas-liquid-solid interface enhanced photocatalytic reaction in a microfluidic reactor for water treatment[J]. Applied Catalysis A: General, 2020, 591: 117410.
18 Schreck M, Niederberger M. Photocatalytic gas phase reactions[J]. Chemistry of Materials, 2019, 31(3): 597-618.
19 Sundar K P, Kanmani S. Progression of photocatalytic reactors and its comparison: a review[J]. Chemical Engineering Research and Design, 2020, 154: 135-150.
20 Younis S, Kim K H. Heterogeneous photocatalysis scalability for environmental remediation: opportunities and challenges[J]. Catalysts, 2020, 10(10): 1109.
21 da Costa Filho B M, Vilar V J P. Strategies for the intensification of photocatalytic oxidation processes towards air streams decontamination: a review[J]. Chemical Engineering Journal, 2020, 391: 123531.
22 Jia H P, Wong Y L, Jian A Q, et al. Microfluidic reactors for plasmonic photocatalysis using gold nanoparticles[J]. Micromachines, 2019, 10(12): E869.
23 Chen R, Li L, Zhu X, et al. Highly-durable optofluidic microreactor for photocatalytic water splitting[J]. Energy, 2015, 83: 797-804.
24 Nakamura A, Yoshida K, Kuwahara S, et al. Photocatalytic organic syntheses using a glass-milled microchip[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 322/323: 35-40.
25 Espíndola J C, Vilar V J P. Innovative light-driven chemical/catalytic reactors towards contaminants of emerging concern mitigation: a review[J]. Chemical Engineering Journal, 2020, 394: 124865.
26 Arima V, Watts P, Pascali G. Microfluidics in planar microchannels: synthesis of chemical compounds on-chip[M]//Lab-on-a-Chip Devices and Micro-Total Analysis Systems. Springer, 2015.
27 张权, 王宏志, 李耀刚, 等. ZnO一维纳米结构修饰的微反应器的构建及其催化性能研究[J]. 硅酸盐通报, 2013, 32(7): 1231-1236.
Zhang Q, Wang H Z, Li Y G, et al. Fabrication of ZnO one-dimensional nanostructure modified microreactor and its catalytic performance research[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(7): 1231-1236.
28 Wang F, Tong J, Bian C, et al. A fully integrated on-chip electrochemical microreactor for the detection of total phosphorus in freshwater[C]// 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2015: 1468-1471.
29 Lei L, Wang N, Zhang X M, et al. Optofluidic planar reactors for photocatalytic water treatment using solar energy[J]. Biomicrofluidics, 2010, 4(4): 43004.
30 Vezzoli M, Farrell T, Baker A, et al. Optimal catalyst thickness in titanium dioxide fixed film reactors: mathematical modelling and experimental validation[J]. Chemical Engineering Journal, 2013, 234: 57-65.
31 Wang N, Tan F R, Tsoi C C, et al. Photoelectrocatalytic microreactor for seawater decontamination with negligible chlorine generation[J]. Microsystem Technologies, 2017, 23(10): 4495-4500.
32 Kamiya A, Togawa T. Optimal branching structure of the vascular tree[J]. The Bulletin of Mathematical Biophysics, 1972, 34(4): 431-438.
33 Damiri H S, Bardaweel H K. Numerical design and optimization of hydraulic resistance and wall shear stress inside pressure-driven microfluidic networks[J]. Lab on a Chip, 2015, 15(21): 4187-4196.
34 Liao W X, Wang N, Wang T S, et al. Biomimetic microchannels of planar reactors for optimized photocatalytic efficiency of water purification[J]. Biomicrofluidics, 2016, 10(1): 014123.
35 Razavi M S, Shirani E, Kassab G S. Scaling laws of flow rate, vessel blood volume, lengths, and transit times with number of capillaries[J]. Frontiers in Physiology, 2018, 9: 581.
36 de Sá D S, Vasconcellos L E, de Souza J R, et al. Intensification of photocatalytic degradation of organic dyes and phenol by scale-up and numbering-up of meso- and microfluidic TiO2 reactors for wastewater treatment[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364: 59-75.
37 Mohamed H E A, Sone B T, Khamlich S, et al. Biosynthesis of BiVO4 nanorods using Callistemon viminalis extracts: photocatalytic degradation of methylene blue[J]. Materials Today: Proceedings, 2021, 36: 328-335.
38 Rozman N, Tobaldi D M, Cvelbar U, et al. Hydrothermal synthesis of rare-earth modified titania: influence on phase composition, optical properties, and photocatalytic activity[J]. Materials, 2019, 12(5): E713.
39 Meng Z X, Zhang X, Qin J H. A high efficiency microfluidic-based photocatalytic microreactor using electrospun nanofibrous TiO2 as a photocatalyst[J]. Nanoscale, 2013, 5(11): 4687-4690.
40 Lamberti A. Microfluidic photocatalytic device exploiting PDMS/TiO2 nanocomposite[J]. Applied Surface Science, 2015, 335: 50-54.
41 Urkasame K, Yoshida S, Takanohashi T, et al. Development of TiO2-SiO2 photocatalysts having a microhoneycomb structure by the ice templating method[J]. ACS Omega, 2018, 3(10): 14274-14279.
[1] 戴晓业, 安青松, 许云婷, 史琳. 废弃制冷剂降解方法研究现状及思考[J]. 化工学报, 2021, 72(S1): 1-6.
[2] 王兆奇, 李孟山, 胡海涛, 魏文建. 双排对折型微通道换热器仿真模型开发[J]. 化工学报, 2021, 72(S1): 113-119.
[3] 赵文一, 匡以武, 王文, 张红星, 苗建印. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265.
[4] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[5] 燕子腾, 吴国明, 庄大伟, 丁国良, 曹法立, 孟建军. 用于微通道换热器的循环流道分流器的设计方法与应用效果[J]. 化工学报, 2021, 72(S1): 77-83.
[6] 刘璐, 丁国良, 庄大伟, 杨艺菲, 杜心远. 微通道换热器百叶窗翅片排水性能的CFD模拟[J]. 化工学报, 2021, 72(S1): 91-97.
[7] 赵兰萍, 郭本涛, 杨志刚. 车用热泵内部冷凝器结构对性能的影响[J]. 化工学报, 2021, 72(9): 4616-4628.
[8] 李海涛, 孟平凡, 张因, 武瑞芳, 黄鑫, 班丽君, 韩旭东, 席琳, 王兴皓, 田博辉, 赵永祥. SiO2网络限域CuO纳米晶的甲醛乙炔化性能研究[J]. 化工学报, 2021, 72(9): 4708-4717.
[9] 黄莉婷, 韩昫身, 金艳, 马强, 于建国. 煤化工反渗透浓水的高效降解菌株筛选、鉴定及应用研究[J]. 化工学报, 2021, 72(9): 4881-4891.
[10] 贾艳萍, 单晓倩, 宋祥飞, 佟泽为, 张健, 张兰河. 响应面法优化餐饮废水混凝工艺研究[J]. 化工学报, 2021, 72(9): 4931-4940.
[11] 赵晶, 李伯耿, 卜志扬, 范宏. 微通道内低黏聚合物流体的停留时间分布研究[J]. 化工学报, 2021, 72(8): 4030-4038.
[12] 曹海亮, 张红飞, 左潜龙, 安琪, 张子阳, 刘红贝. 梯形微槽道表面池沸腾换热性能研究[J]. 化工学报, 2021, 72(8): 4111-4120.
[13] 徐子昂, 万磊, 刘凯, 王保国. 高稳定碱性离子膜分子设计研究进展[J]. 化工学报, 2021, 72(8): 3891-3906.
[14] 董晓锐, 王凯, 骆广生. 金纳米颗粒的微反应连续合成[J]. 化工学报, 2021, 72(7): 3823-3831.
[15] 王宗旭,李紫欣,白璐,董海峰,张香平. 固/液界面纳米气泡形成及稳定性研究进展[J]. 化工学报, 2021, 72(7): 3466-3477.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘植昌, 孟祥海, 徐春明, 高金森. 重油催化裂解汽柴油二次裂解性能研究[J]. CIESC Journal, 2007, 15(3): 309 -314 .
[2] 黄福明,张国伟,胡春圃,应圣康. 硅溶胶/苯乙烯-丙烯酸酯共聚物无机-有机杂化水分散液的制备和表征[J]. CIESC Journal, 2005, 13(6): 816 -823 .
[3] 孙海翔, 张林, 柴红, 陈欢林. 壳聚糖亲和膜脱除蛋白质溶液中的内毒素[J]. CIESC Journal, 2005, 13(4): 457 -463 .
[4] 姬忠礼,焦海青,陈鸿海. 陶瓷过滤管表面粉尘层清除过程的图像分析[J]. CIESC Journal, 2005, 13(2): 178 -183 .
[5] 刘永健, 袁希钢, 罗祎青. 基于浓度间隔分析的用水系统集成(II)不连续过程[J]. CIESC Journal, 2007, 15(3): 369 -375 .
[6] 郑裕国, 陈小龙, 汪钊, 沈寅初. 低高径比外循环气升式生物反应器带渣发酵生产有效霉素[J]. CIESC Journal, 2004, 12(1): 102 -107 .
[7] 唐致远, 冯季军, 彭亚宁. 采用不同锰源合成尖晶石LiMn2O4正极材料[J]. CIESC Journal, 2004, 12(1): 124 -127 .
[8] 罗艳托, 朱建华, 陈光进. 鼓泡塔中水合物法分离混合气体的数值模拟[J]. CIESC Journal, 2007, 15(3): 345 -352 .
[9] 李良智, 乔斌, 元英进. 氮源对利迪链菌素生产及相关次级代谢物分布的影响[J]. CIESC Journal, 2007, 15(3): 403 -410 .
[10] 刘亚青, 赵贵哲. 三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究[J]. CIESC Journal, 2007, 15(3): 429 -432 .