化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 170-177.doi: 10.11949/0438-1157.20201569

• 流体力学与传递现象 • 上一篇    下一篇

电动汽车电池冷却器换热性能

马秋鸣1(),聂磊1,潘权稳1(),山訸1,曹伟亮2,王强2,王如竹1   

  1. 1.上海交通大学机械与动力工程学院,上海 200240
    2.上海欧菲滤清器有限公司,上海 201702
  • 收稿日期:2020-11-03 修回日期:2021-01-11 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 潘权稳 E-mail:qiuming.ma@sjtu.edu.cn;sailote@sjtu.edu.cn
  • 作者简介:马秋鸣(1989—),男,博士,助理研究员,qiuming.ma@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金创新群体项目(51521004)

Heat exchange performance of a battery chiller for electric vehicles

MA Qiuming1(),NIE Lei1,PAN Quanwen1(),SHAN He1,CAO Weiliang2,WANG Qiang2,WANG Ruzhu1   

  1. 1.Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
    2.Research & Development China, UFI FILTERS S. p. A. , Shanghai 201702, China
  • Received:2020-11-03 Revised:2021-01-11 Published:2021-06-20 Online:2021-06-20
  • Contact: PAN Quanwen E-mail:qiuming.ma@sjtu.edu.cn;sailote@sjtu.edu.cn

摘要:

电动汽车中电池组的热管理对汽车的性能和安全性十分重要。通常使用小型电池冷却器(chiller)与车载空调系统的蒸发器并联,用来冷却电池冷却板中的冷却液。为了对实际电池冷却器的换热性能进行评估和分析,设计搭建了一套完整的试验测试系统,并验证了其测试的稳定性和重复性。在此基础上,对最新设计的小型紧凑电池冷却器进行了不同工况下的性能测试和分析,得到了其换热功率和流阻随冷媒侧和冷却液侧参数改变的变化规律,最高换热功率达到了5.6 kW。

关键词: 电动汽车热管理, 电池冷却器, 试验测试系统, 压缩机, 蒸发, 传热

Abstract:

The thermal management of the battery pack inside an electric vehicle is crucial to its safety and performance. Usually, a small and compact chiller with internal turbulence-generating structure is installed in parallel with the evaporator of the vehicle air-conditioning system, so as to cool down the coolant that circulates in the battery cooling plate. However, the establishment of specific testing facilities for the chiller and its experimental analyses have seldom been seen in the literature. In order to provide a steady and reliable chiller performance testing platform and to evaluate and analyze the heat exchanging capacity of a newly-designed chiller, a complete experimental system was thoroughly designed and established, and its stability and repetitiveness were then validated. Based on such a testing facility, the small chiller for the battery coolant was experimentally tested under different working conditions, and its heat exchanging performance and pressure drops were analyzed against the variations of the parameters of both refrigerant side and coolant side. Results reveal that the evaporating pressure of the refrigerant possesses bigger impact on the heat exchange than the superheated temperature at the outlet, and the pressure drop of the refrigerant always has similar trend with the heat exchanging capacity. On the coolant side, the inlet temperature and flowrate both have positive influence on the heat exchange. Finally, the highest heat exchanging capacity reached 5.6 kW, and the calculated efficiency of the compressor varied between 0.6 and 0.8.

Key words: thermal management of electric vehicles, chiller, experimental testing system, compressor, evaporation, heat transfer

中图分类号: 

  • TK 11.3

图1

液冷电动汽车空调及电池冷却系统[22]"

图2

电池冷却器外形实物"

图3

试验测试系统(图中P为压力测点,T为温度测点,V为流量测点,ΔP为压差测点)"

表1

试验测试系统部件型号及主要参数"

部件型号规格生产厂家
压缩机

EVS50B

(低压版)

EVS50HLBCAA-8AA

全封闭电动涡旋压缩机,排量50c/rev,转速1500~6000;

8.5kW~6000 r/min,0.2/1.4 MPa[G]

SH/SC=10/5K;

6.3kW~6000 r/min Te/Tc=-20/45℃

SH/SC=10/5 K;

接口管径OD 15.5 mm / ID 21.3 mm

高压工作范围400~720 V;低压工作范围9~36 V

通讯协议CAN2.0;波特率500

上海海立新能源技术有限公司
冷凝器B3-020G-42D-304-4.5

钎焊板式换热器

总换热面积:0.8 m2

外形尺寸312 mm×76 mm×64 mm

接口管径:制冷剂侧15.5 mm,水侧19 mm

江苏唯益换热器股份公司
过冷器B3-020G-10D-304-4.5

钎焊板式换热器

总换热面积:0.2 m2

外形尺寸312 mm×76 mm×18 mm

接口管径:制冷剂侧15.5 mm,水侧19 mm

江苏唯益换热器股份公司
电子膨胀阀EAS-16K001

阀口通径1.6 mm

接口管径OD 11.05/ID 15.5 mm

浙江三花汽车零部件有限公司
气液分离器RA-207

接口管径ID/OD 19/21 mm

桶身高度218 mm

配备分子筛

适用冷量10 kW

天津双昊车用空调有限公司
高压电源HNX-600V-7200W

输入380 V AC

输出6~600 V DC 12 A

深圳市海纳信科技有限公司

表2

传感器参数"

参数测量仪表量程精度厂商

制冷剂温度T/℃

制冷剂绝对压力

p/kPa

高温温压传感器

T -30~125

p 184~3518

±1.5%盾安传感
低温温压传感器

T -30~125

p 101~1025

±1.5%
冷却液温度/℃水温传感器-40~200±0.5℃三花汽零
冷却液压差/kPa压差传感器0~100±1%杭州美控
冷却液流量/(L/min)体积流量传感器5~25±1%长征仪表
输入电流/A直流电流传感器0~20 A DC±0.5%杭州美控
输入电压/V直流电压传感器0~1000 V DC±0.5%杭州美控

表3

试验测试基准工况"

工况参数数值
膨胀阀进口温度T3/℃50
膨胀阀进口绝对压力p3/MPa1.5
chiller出口过热度SH3/℃5
chiller出口绝对压力p5/MPa0.3
冷却液侧流量V3/(L/min)12
冷却液侧进口温度T11/℃20

图4

chiller换热功率和两侧流阻随出口过热度的变化"

图5

chiller换热功率和两侧流阻随出口压力的变化"

图6

chiller换热功率和两侧流阻随冷却液进口温度的变化"

1 Kim S C, Won J P, Park Y S, et al. Performance evaluation of a stack cooling system using CO2 air conditioner in fuel cell vehicles [J]. International Journal of Refrigeration, 2009, 32(1): 70-77.
2 Al-Alawi B M, Bradley T H. Total cost of ownership, payback, and consumer preference modeling of plug-in hybrid electric vehicles [J]. Applied Energy, 2013, 103: 488-506.
3 Brouwer A S, Kuramochi T, van den Broek M, et al. Fulfilling the electricity demand of electric vehicles in the long term future: an evaluation of centralized and decentralized power supply systems [J]. Applied Energy, 2013, 107: 33-51.
4 Habib S, Khan M M, Abbas F, et al. A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles [J]. IEEE Access, 2018, 6: 13866-13890.
5 Opitz A, Badami P, Shen L, et al. Can Li-ion batteries be the panacea for automotive applications? [J]. Renewable and Sustainable Energy Reviews, 2017, 68: 685-692.
6 Hong S H, Jang D S, Park S, et al. Thermal performance of direct two-phase refrigerant cooling for lithium-ion batteries in electric vehicles [J]. Applied Thermal Engineering, 2020, 173: 115213.
7 Santhanagopalan S, Zhang Q, Kumaresan K, et al. Parameter estimation and life modeling of lithium-ion cells [J]. Journal of the Electrochemical Society, 2008, 155(4): A345.
8 Arora S, Kapoor A, Shen W X. A novel thermal management system for improving discharge/charge performance of Li-ion battery packs under abuse [J]. Journal of Power Sources, 2018, 378: 759-775.
9 Doucette R T, McCulloch M D. Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions [J]. Applied Energy, 2011, 88(7): 2315-2323.
10 Wang H, Liu Y, Fu H, et al. Estimation of state of charge of batteries for electric vehicles [J]. International Journal of Control and Automation, 2013, 6(2): 185-194.
11 Kim D W, Lee M Y. Theoretical approach on the heating and cooling system design for an effective operation of Li-ion batteries for electric vehicles [J]. Journal of the Korea Academia-Industrial Cooperation Society, 2014, 15(5): 2545-2552.
12 Lee H S, Won J P, Lim T K, et al. Experimental study on performance characteristics of the triple fluids heat exchanger with two kinds of coolants in electric-driven air conditioning system for fuel cell electric vehicles [J]. Energy Procedia, 2017, 113: 209-216.
13 Alaoui C. Solid-state thermal management for lithium-ion EV batteries [J]. IEEE Transactions on Vehicular Technology, 2013, 62(1): 98-107.
14 Wang Q, Jiang B, Li B, et al. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles [J]. Renewable and Sustainable Energy Reviews, 2016, 64: 106-128.
15 Choi K W, Yao N P. Heat transfer in lead-acid batteries designed for electric-vehicle propulsion application [J]. Journal of the Electrochemical Society, 1979, 126(8): 1321-1328.
16 Kim G H, Pesaran A. Battery thermal management design modeling [J]. World Electric Vehicle Journal, 2007, 1(1): 126-133.
17 黄蔚. 电动汽车电池冷却器仿真研究[D]. 贵阳: 贵州大学, 2019.
Huang W. Simulations of chiller for electric vehicles [D]. Guiyang: Guizhou University, 2019.
18 Pesaran A A. Battery thermal models for hybrid vehicle simulations [J]. Journal of Power Sources, 2002, 110(2): 377-382.
19 Rao Z H, Wang S F. A review of power battery thermal energy management [J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4554-4571.
20 Bandhauer T M, Garimella S, Fuller T F. A critical review of thermal issues in lithium-ion batteries [J]. Journal of the Electrochemical Society, 2011, 158(3): R1.
21 Drummond K P, Back D, Sinanis M D, et al. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics [J]. International Journal of Heat and Mass Transfer, 2018, 117: 319-330.
22 张荣荣, 张根祥, Stanke Edwin, 等. 电子膨胀阀在电动汽车空调和电池冷却系统中的应用[J]. 制冷与空调, 2018, 18(5): 77-80, 85.
Zhang R R, Zhang G X, Stanke E, et al. Electronic expansion valve in the application of the electric car air conditioning cooling system and battery [J]. Refrigeration and Air-Conditioning, 2018, 18(5): 77-80, 85.
23 张春秋, 罗玉林. 电动汽车电池冷却系统对空调系统性能的影响[J]. 制冷与空调, 2020, 20(2): 49-52, 72.
Zhang C Q, Luo Y L. Effect of battery cooling system on performance of air-conditioning system for electric vehicle [J]. Refrigeration and Air-Conditioning, 2020, 20(2): 49-52, 72.
24 Longo G A. The effect of vapour super-heating on hydrocarbon refrigerant condensation inside a brazed plate heat exchanger [J]. Experimental Thermal and Fluid Science, 2011, 35(6): 978-985.
25 Mancin S, de del Col D, Rossetto L. R32 partial condensation inside a brazed plate heat exchanger [J]. International Journal of Refrigeration, 2013, 36(2): 601-611.
26 Sarraf K, Launay S, Tadrist L. Analysis of enhanced vapor desuperheating during condensation inside a plate heat exchanger [J]. International Journal of Thermal Sciences, 2016, 105: 96-108.
27 Longo G A, Mancin S, Righetti G, et al. HFC404A condensation inside a small brazed plate heat exchanger: comparison with the low GWP substitutes propane and propylene [J]. International Journal of Refrigeration, 2017, 81: 41-49.
28 吴学红, 李灿, 龚毅, 等. 板式换热器相变流动的传热及压降特性[J]. 化工学报, 2017, 68(S1): 133-140.
Wu X H, Li C, Gong Y, et al. Heat transfer and pressure drop characteristic of phase change flow in plate heat exchanger [J]. CIESC Journal, 2017, 68(S1): 133-140.
29 李明春, 肖刚, 史和春, 等. 人字形波纹板相变流动及换热特性研究[J]. 工程热物理学报, 2016, 37(3): 581-585.
Li M C, Xiao G, Shi H C, et al. Study on phase change flow and heat transfer characteristics of chevron corrugated plate [J]. Journal of Engineering Thermophysics, 2016, 37(3): 581-585.
30 Ian H. Bell and the CoolProp Team. CoolProp 6.1.0 documentation [EB/OL]. [2020-05-06]. .
31 Clifford A A. Multivariate error analysis: a handbook of error propagation and calculation in many-parameter system [EB/OL]. 1973.
[1] 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126.
[2] 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
[3] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[4] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[5] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[6] 吴迪, 胡斌, 王如竹, 余京京, 林欣毅, 李子亮. 水工质热泵多种循环的理论研究与性能对比[J]. 化工学报, 2021, 72(S1): 236-243.
[7] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[8] 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301.
[9] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[10] 顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335.
[11] 邹慧明, 王英琳, 李旋, 唐明生, 田长青. R290直线压缩机变工况制冷性能[J]. 化工学报, 2021, 72(S1): 342-347.
[12] 王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355.
[13] 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389.
[14] 陈尔健, 代彦军. 使用NH3-LiNO3工质对的增压型回热吸收循环性能分析[J]. 化工学报, 2021, 72(S1): 445-452.
[15] 姜佳彤, 胡斌, 王如竹, 刘华, 张治平, 李宏波. R1233zd(E)高温热泵用卧式冷凝器的换热动态模拟[J]. 化工学报, 2021, 72(S1): 98-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 司徒粤, 胡剑峰, 黄洪, 傅和青, 曾汉维, 陈焕钦. 新型环氧大豆油增韧酚醛树脂的合成与性质[J]. CIESC Journal, 2007, 15(3): 418 -423 .
[2] 周彩荣, 石晓华, 王海峰, 高玉国, 蒋登高. 反式-1,2-环基二醇+乙酸丁酯+水三元体系固液相平衡[J]. CIESC Journal, 2007, 15(3): 449 -452 .
[3] 屈玲, 佟大明, 吕志平, 萧墉壮, 窦涛. 苯乙烯在MCM-41介孔材料中聚合的研究[J]. CIESC Journal, 2003, 11(6): 677 -680 .
[4] 周彩荣, 章亚东, 蒋登高. 1,2-环己二醇的焓和热容数据研究[J]. CIESC Journal, 2003, 11(5): 598 -600 .
[5] 赵伟荣, 史惠祥, 汪大翚. 臭氧氧化阳离子红染料的动力学研究[J]. CIESC Journal, 2003, 11(4): 388 -394 .
[6] 胡国勤, 陈鸿雁, 蔡建国, 邓修. 用含夹带剂丙酮的超临界CO2快速膨胀法制备灰黄霉素的微细颗粒[J]. CIESC Journal, 2003, 11(4): 403 -407 .
[7] 娄文勇, 宗敏华, 范晓丹. 水/有机溶剂双相中固定化啤酒酵母细胞催化三甲基硅乙酮不对称还原[J]. CIESC Journal, 2003, 11(2): 136 -140 .
[8] 霍超, 孟灋, 任晓红, 阳永荣, 戎顺熙. 烯烃聚合过程的分形演化及其生长模型[J]. CIESC Journal, 2003, 11(1): 33 -37 .
[9] 淮秀兰, 刘登瀛, SHIGERU Koyama, BIDYUT Baran Saha. 对撞流干燥的实验与理论研究[J]. CIESC Journal, 2003, 11(1): 42 -48 .
[10] Jan-Christer Janson . 大型蛋白质色谱柱及凝胶介质的综述[J]. CIESC Journal, 2002, 10(6): 690 -695 .